1
|
Mitranovici MI, Costachescu D, Voidazan S, Munteanu M, Buicu CF, Oală IE, Ivan V, Apostol A, Melinte IM, Crisan A, Pușcașiu L, Micu R. Exploring the Shared Pathogenesis Mechanisms of Endometriosis and Cancer: Stemness and Targeted Treatments of Its Molecular Pathways-A Narrative Review. Int J Mol Sci 2024; 25:12749. [PMID: 39684461 DOI: 10.3390/ijms252312749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Endometriosis is a benign disease but with malignant behavior, sharing numerous features with cancers. Endometriosis is the development of endometrial tissue outside the uterus, with the presence of both glands and stroma. Approximately 10% of women of reproductive age suffer from endometriosis; it involves high social costs and affects the patient's quality of life. In this review, we attempt to capture the pathogenesis mechanisms that are common to endometriosis and cancer based on molecular biology, focusing more on the principle of immunological changes and stemness. Clinical applicability will consist of targeted treatments that represent future directions in these diseases, which impose a burden on the healthcare system. Unlike endometriosis, cancer is a disease with fatal evolution, with conventional treatment based on chemo/radiotherapy. Here, we focus on the niche of personalized treatments that target molecular pathways. Our findings show that, in both pathologies, the resistance to treatments is due to the stemness of the stem cells, which might play a role in the appearance and evolution of both diseases. More research is needed before we can draw firm conclusions.
Collapse
Affiliation(s)
- Melinda-Ildiko Mitranovici
- Department of Obstetrics and Gynecology, Emergency County Hospital Hunedoara, 14 Victoriei Street, 331057 Hunedoara, Romania
| | - Dan Costachescu
- Department of Orthopedics-Traumatology, Urology, Radiology and Medical Imaging, University of Medicine and Pharmacy Victor Babes, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Septimiu Voidazan
- Department of Epidemiology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Mihai Munteanu
- Faculty of Electrical Engineering, Technical University, George Baritiu Street, 400394 Cluj-Napoca, Romania
| | - Corneliu-Florin Buicu
- Department of Epidemiology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Ioan Emilian Oală
- Department of Obstetrics and Gynecology, Emergency County Hospital Hunedoara, 14 Victoriei Street, 331057 Hunedoara, Romania
| | - Viviana Ivan
- Department VII, Internal Medicine II, Discipline of Cardiology, University of Medicine and Pharmacy Victor Babes, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Adrian Apostol
- Department VII, Internal Medicine II, Discipline of Cardiology, University of Medicine and Pharmacy Victor Babes, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Ioana M Melinte
- Department of Epidemiology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Andrada Crisan
- Department of Epidemiology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Lucian Pușcașiu
- Department of Epidemiology, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Romeo Micu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy Iuliu Hatieganu, 400347 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Iordache F, Petcu ACI, Alexandru DM. Genetic and Epigenetic Interactions Involved in Senescence of Stem Cells. Int J Mol Sci 2024; 25:9708. [PMID: 39273655 PMCID: PMC11396476 DOI: 10.3390/ijms25179708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Cellular senescence is a permanent condition of cell cycle arrest caused by a progressive shortening of telomeres defined as replicative senescence. Stem cells may also undergo an accelerated senescence response known as premature senescence, distinct from telomere shortening, as a response to different stress agents. Various treatment protocols have been developed based on epigenetic changes in cells throughout senescence, using different drugs and antioxidants, senolytic vaccines, or the reprogramming of somatic senescent cells using Yamanaka factors. Even with all the recent advancements, it is still unknown how different epigenetic modifications interact with genetic profiles and how other factors such as microbiota physiological conditions, psychological states, and diet influence the interaction between genetic and epigenetic pathways. The aim of this review is to highlight the new epigenetic modifications that are involved in stem cell senescence. Here, we review recent senescence-related epigenetic alterations such as DNA methylation, chromatin remodeling, histone modification, RNA modification, and non-coding RNA regulation outlining new possible targets for the therapy of aging-related diseases. The advantages and disadvantages of the animal models used in the study of cellular senescence are also briefly presented.
Collapse
Affiliation(s)
- Florin Iordache
- Biochemistry Disciplines, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
- Advanced Research Center for Innovative Materials, Products and Processes CAMPUS, Politehnica University, 060042 Bucharest, Romania
| | - Adriana Cornelia Ionescu Petcu
- Biochemistry Disciplines, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| | - Diana Mihaela Alexandru
- Pharmacology and Pharmacy Disciplines, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| |
Collapse
|
3
|
Honer MA, Ferman BI, Gray ZH, Bondarenko EA, Whetstine JR. Epigenetic modulators provide a path to understanding disease and therapeutic opportunity. Genes Dev 2024; 38:473-503. [PMID: 38914477 PMCID: PMC11293403 DOI: 10.1101/gad.351444.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
Collapse
Affiliation(s)
- Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
4
|
Pullen RL. Ovarian cancer. Nursing 2024; 54:17-28. [PMID: 38757992 DOI: 10.1097/nsg.0000000000000002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Ovarian cancer, a leading cause of cancer deaths, poses challenges due to insidious development and vague signs and symptoms. Risk factors include age, reproductive history, genetic mutations, and environmental factors. Treatment involves surgery, chemotherapy, and targeted therapy, with nursing interventions focusing on symptom management and supportive care.
Collapse
Affiliation(s)
- Richard L Pullen
- Richard Pullen is a professor and the RN to BSN Program director at the Texas Tech University Health Sciences Center School of Nursing
| |
Collapse
|
5
|
Garg P, Krishna M, Subbalakshmi AR, Ramisetty S, Mohanty A, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging biomarkers and molecular targets for precision medicine in cervical cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189106. [PMID: 38701936 DOI: 10.1016/j.bbcan.2024.189106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Cervical cancer remains a significant global health burden, necessitating innovative approaches for improved diagnostics and personalized treatment strategies. Precision medicine has emerged as a promising paradigm, leveraging biomarkers and molecular targets to tailor therapy to individual patients. This review explores the landscape of emerging biomarkers and molecular targets in cervical cancer, highlighting their potential implications for precision medicine. By integrating these biomarkers into comprehensive diagnostic algorithms, clinicians can identify high-risk patients at an earlier stage, enabling timely intervention and improved patient outcomes. Furthermore, the identification of specific molecular targets has paved the way for the development of targeted therapies aimed at disrupting key pathways implicated in cervical carcinogenesis. In conclusion, the evolving landscape of biomarkers and molecular targets presents exciting opportunities for advancing precision medicine in cervical cancer. By harnessing these insights, clinicians can optimize treatment selection, enhance patient outcomes, and ultimately transform the management of this devastating disease.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Madhu Krishna
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ayalur Raghu Subbalakshmi
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sravani Ramisetty
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Departments of Medical Oncology & Therapeutics Research and Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
6
|
Liang H, Zheng X, Zhang X, Zhang Y, Zheng J. The role of SWI/SNF complexes in digestive system neoplasms. Med Oncol 2024; 41:119. [PMID: 38630164 DOI: 10.1007/s12032-024-02343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 04/19/2024]
Abstract
Chromatin remodeling is a critical step in the DNA damage response, and the ATP-dependent chromatin remodelers are a group of epigenetic regulators that alter nucleosome assembly and regulate transcription factor accessibility to DNA, preventing genomic instability and tumorigenesis caused by DNA damage. The SWI/SNF chromatin remodeling complex is one of them, and mutations in the gene encoding the SWI/SNF subunit are frequently found in digestive tumors. We review the most recent literature on the role of SWI/SNF complexes in digestive tumorigenesis, with different SWI/SNF subunits playing different roles. They regulate the biological behavior of tumor cells, participate in multiple signaling pathways, interact with multiple genes, and have some correlation with the prognosis of patients. Their carcinogenic properties may help discover new therapeutic targets. Understanding the mutations and defects of SWI/SNF complexes, as well as the underlying functional mechanisms, may lead to new strategies for treating the digestive system by targeting relevant genes or modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Hanyun Liang
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China
| | - Xin Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China
| | - Xiao Zhang
- Department of Ultrasound, Weifang People's Hospital, Weifang, 261041, China
| | - Yan Zhang
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261053, China.
| | - Jie Zheng
- Department of Diagnostic Pathology, Shandong Second Medical University, Weifang, 261053, China.
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
7
|
Di Maggio F, Boccia G, Nunziato M, Filotico M, Montesarchio V, D'Armiento M, Corcione F, Salvatore F. A Novel DNA Variant in SMARCA4 Gene Found in a Patient Affected by Early Onset Colon Cancer. Int J Mol Sci 2024; 25:2716. [PMID: 38473962 DOI: 10.3390/ijms25052716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer is the third leading cause of death from neoplasia worldwide. Thanks to new screening programs, we are now seeing an increase in Early Onset of ColoRectal Cancer (EOCRC) in patients below the age of 50. Herein, we report a clinical case of a woman affected by EOCRC. This case illustrates the importance of genetic predisposition testing also in tumor patients. Indeed, for our patient, we used a combined approach of multiple molecular and cellular biology technologies that revealed the presence of an interesting novel variant in the SMARCA4 gene. The latter gene is implicated in damage repair processes and related, if mutated, to the onset of various tumor types. In addition, we stabilized Patient-Derived Organoids from the tumor tissue of the same patient and the result confirmed the presence of this novel pathogenic variant that has never been found before even in early onset cancer. In conclusion, with this clinical case, we want to underscore the importance of including patients even those below the age of 50 years in appropriate screening programs which should also include genetic tests for predisposition to early onset cancers.
Collapse
Affiliation(s)
- Federica Di Maggio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe Boccia
- Department of Public Health, University of Naples "Federico II", 80131 Naples, Italy
| | - Marcella Nunziato
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy
| | - Marcello Filotico
- Department of Public Health, University of Naples "Federico II", 80131 Naples, Italy
| | | | - Maria D'Armiento
- Pathology Unit, Department of Public Health, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Corcione
- Department of Public Health, University of Naples "Federico II", 80131 Naples, Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
8
|
Chutani N, Ragula S, Syed K, Pakala SB. Novel Insights into the Role of Chromatin Remodeler MORC2 in Cancer. Biomolecules 2023; 13:1527. [PMID: 37892209 PMCID: PMC10605154 DOI: 10.3390/biom13101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
A newly discovered chromatin remodeler, MORC2, is a Microrchidia (MORC) family member. MORC2 acts as a chromatin remodeler by binding to the DNA and changing chromatin conformation using its ATPase domain. MORC2 is highly expressed in a variety of human cancers. It controls diverse signaling pathways essential for cancer development through its target genes and interacting partners. MORC2 promotes cancer cells' growth, invasion, and migration by regulating the expression of genes involved in these processes. MORC2 is localized primarily in the nucleus and is also found in the cytoplasm. In the cytoplasm, MORC2 interacts with adenosine triphosphate (ATP)-citrate lyase (ACLY) to promote lipogenesis and cholesterogenesis in cancer. In the nucleus, MORC2 interacts with the transcription factor c-Myc to control the transcription of genes involved in glucose metabolism to drive cancer cell migration and invasion. Furthermore, MORC2 recruits on to the promoters of tumor suppressor genes to repress their transcription and expression to promote oncogenesis. In addition to its crucial function in oncogenesis, it plays a vital role in DNA repair. Overall, this review concisely summarizes the current knowledge about MORC2-regulated molecular pathways involved in cancer.
Collapse
Affiliation(s)
- Namita Chutani
- Biology Division, Indian Institute of Science Education and Research (IISER) Tirupati, Mangalam, Tirupati 517 507, India;
| | - Sandhya Ragula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India;
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - Suresh B. Pakala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India;
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| |
Collapse
|
9
|
Mao X, Wu J, Zhang Q, Zhang S, Chen X, Liu X, Wei M, Wan X, Qiu L, Zeng M, Lei X, Liu C, Han J. Requirement of WDR70 for POLE3-mediated DNA double-strand breaks repair. SCIENCE ADVANCES 2023; 9:eadh2358. [PMID: 37682991 PMCID: PMC10491287 DOI: 10.1126/sciadv.adh2358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
H2BK120ub1 triggers several prominent downstream histone modification pathways and changes in chromatin structure, therefore involving it into multiple critical cellular processes including DNA transcription and DNA damage repair. Although it has been reported that H2BK120ub1 is mediated by RNF20/40 and CRL4WDR70, less is known about the underlying regulation mechanism for H2BK120ub1 by WDR70. By using a series of biochemical and cell-based studies, we find that WDR70 promotes H2BK120ub1 by interacting with RNF20/40 complex, and deposition of H2BK120ub1 and H3K79me2 in POLE3 loci is highly sensitive to POLE3 transcription. Moreover, we demonstrate that POLE3 interacts CHRAC1 to promote DNA repair by regulation on the expression of homology-directed repair proteins and KU80 recruitment and identify CHRAC1 D121Y mutation in colorectal cancer, which leads to the defect in DNA repair due to attenuated the interaction with POLE3. These findings highlight a previously unknown role for WDR70 in maintenance of genomic stability and imply POLE3 and CHRAC1 as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Xiaobing Mao
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Wu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoshuang Chen
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Liu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Zeng
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University hospital, Sichuan University, Chengdu 610041, China
| | - Xue Lei
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cong Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Lara-Astiaso D, Goñi-Salaverri A, Mendieta-Esteban J, Narayan N, Del Valle C, Gross T, Giotopoulos G, Beinortas T, Navarro-Alonso M, Aguado-Alvaro LP, Zazpe J, Marchese F, Torrea N, Calvo IA, Lopez CK, Alignani D, Lopez A, Saez B, Taylor-King JP, Prosper F, Fortelny N, Huntly BJP. In vivo screening characterizes chromatin factor functions during normal and malignant hematopoiesis. Nat Genet 2023; 55:1542-1554. [PMID: 37580596 PMCID: PMC10484791 DOI: 10.1038/s41588-023-01471-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/11/2023] [Indexed: 08/16/2023]
Abstract
Cellular differentiation requires extensive alterations in chromatin structure and function, which is elicited by the coordinated action of chromatin and transcription factors. By contrast with transcription factors, the roles of chromatin factors in differentiation have not been systematically characterized. Here, we combine bulk ex vivo and single-cell in vivo CRISPR screens to characterize the role of chromatin factor families in hematopoiesis. We uncover marked lineage specificities for 142 chromatin factors, revealing functional diversity among related chromatin factors (i.e. barrier-to-autointegration factor subcomplexes) as well as shared roles for unrelated repressive complexes that restrain excessive myeloid differentiation. Using epigenetic profiling, we identify functional interactions between lineage-determining transcription factors and several chromatin factors that explain their lineage dependencies. Studying chromatin factor functions in leukemia, we show that leukemia cells engage homeostatic chromatin factor functions to block differentiation, generating specific chromatin factor-transcription factor interactions that might be therapeutically targeted. Together, our work elucidates the lineage-determining properties of chromatin factors across normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- David Lara-Astiaso
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| | | | | | - Nisha Narayan
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Cynthia Del Valle
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - George Giotopoulos
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Tumas Beinortas
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Mar Navarro-Alonso
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - Jon Zazpe
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Francesco Marchese
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Natalia Torrea
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Isabel A Calvo
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Cecile K Lopez
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Diego Alignani
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Aitziber Lopez
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Borja Saez
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | - Felipe Prosper
- Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Nikolaus Fortelny
- Department of Biosciences & Medical Biology, University of Salzburg, Salzburg, Austria.
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
11
|
Kannampuzha S, Gopalakrishnan AV. Cancer chemoresistance and its mechanisms: Associated molecular factors and its regulatory role. Med Oncol 2023; 40:264. [PMID: 37550533 DOI: 10.1007/s12032-023-02138-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Cancer therapy has advanced from tradition chemotherapy methods to targeted therapy, novel drug delivery mechanisms, combination therapies etc. Although several novel chemotherapy strategies have been introduced, chemoresistance still remains as one of the major barriers in cancer treatments. Chemoresistance can lead to relapse and hinder the development of improved clinical results for cancer patients, and this continues to be the major hurdle in cancer therapy. Anticancer drugs acquire chemoresistance through different mechanisms. Understanding these mechanisms is crucial to overcome and increase the efficiency of the cancer therapies that are employed. The potential molecular pathways behind chemoresistance include tumor heterogeneity, elevated drug efflux, multidrug resistance, interconnected signaling pathways, and other factors. To surpass this limitation, new clinical tactics are to be introduced. This review aims to compile the most recent information on the molecular pathways that regulate chemoresistance in cancers, which will aid in development of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
12
|
He J, Xu T, Zhao F, Guo J, Hu Q. SETD2-H3K36ME3: an important bridge between the environment and tumors. Front Genet 2023; 14:1204463. [PMID: 37359376 PMCID: PMC10288198 DOI: 10.3389/fgene.2023.1204463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Epigenetic regulation plays an important role in the occurrence, development and treatment of tumors. The histone methyltransferase SET-domain-containing 2 (SETD2) plays a key role in mammalian epigenetic regulation by catalyzing histone methylation and interacting with RNA polymerase II to mediate transcription elongation and mismatch repair. As an important bridge between the environment and tumors, SETD2-H3K36me3 plays an important role in the occurrence and development of tumors. Many tumors, including renal cancer, gastric cancer, lung cancer, are closely related to SETD2 gene mutations. As a key component of common tumor suppressor mechanisms, SETD2-H3K36me3is an important target for clinical disease diagnosis and treatment. Here, we reviewed the structure and function of the SETD2 and how SETD2-H3K36me3 functions as a bridge between the environment and tumors to provide an in-depth understanding of its role in the occurrence and development of various tumors, which is of great significance for future disease diagnosis and treatment.
Collapse
Affiliation(s)
- Jiahui He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tangpeng Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fangrui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers (Basel) 2023; 15:448. [PMID: 36672401 PMCID: PMC9856346 DOI: 10.3390/cancers15020448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| |
Collapse
|