1
|
Tang L, Chen B, Wang B, Xu J, Yan H, Shan Y, Zhao X. Mediation of FOXA2/IL-6/IL-6R/STAT3 signaling pathway mediates benzo[a]pyrene-induced airway epithelial mesenchymal transformation in asthma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124384. [PMID: 38901818 DOI: 10.1016/j.envpol.2024.124384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Benzo [a]pyrene (BaP), a toxic pollutant, increases the incidence and severity of asthma. However, the molecular mechanisms underlying the effects of BaP in asthma remain unclear. In terms of research methods, we used BaP to intervene in the animal model of asthma and the human bronchial epithelial (16HBE) cells, and the involved mechanisms were found from the injury, inflammation, and airway epithelial to mesenchymal transition (EMT) in asthma. We also constructed small interfering RNAs and overexpression plasmids to knockdown/overexpress IL-6R and FOXA2 in 16HBE cells and a serotype 9 adeno-associated viral vector for lung tissue overexpression of FOXA2 in mice to determine the mechanism of action of BaP-exacerbated asthma airway EMT. We observed that BaP aggravated inflammatory cell infiltration into the lungs, reduced the Penh value, increased collagen fibres in the lung tissue, and increased serum IgE levels in asthmatic mice. After BaP intervention, the expression of FOXA2 in the lung tissue of asthmatic mice decreased, the production and secretion of IL-6 were stimulated, and STAT3 phosphorylation and nuclear translocation increased, leading to changes in EMT markers. However, EMT decreased after increasing FOXA2 expression and decreasing that of IL-6R and was further enhanced after low FOXA2 expression. Our results revealed that BaP exacerbated airway epithelial cell injury and interfered with FOXA2, activating the IL-6/IL-6R/STAT3 signaling pathway to promote airway EMT in asthma. These findings provide toxicological evidence for the mechanism underlying the contribution of BaP to the increased incidence of asthma and its exacerbations.
Collapse
Affiliation(s)
- Lingling Tang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Bailei Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Bohan Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China
| | - Jing Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hua Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yiwen Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China.
| |
Collapse
|
2
|
Vilas-Boas V, Chatterjee N, Carvalho A, Alfaro-Moreno E. Particulate matter-induced oxidative stress - Mechanistic insights and antioxidant approaches reported in in vitro studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104529. [PMID: 39127435 DOI: 10.1016/j.etap.2024.104529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Inhaled particulate matter (PM) is a key factor in millions of yearly air pollution-related deaths worldwide. The oxidative potential of PM indicates its ability to promote an oxidative environment. Excessive reactive oxygen species (ROS) can cause cell damage via oxidative stress, leading to inflammation, endoplasmic reticulum stress, airway remodeling, and various cell death modes (apoptosis, ferroptosis, pyroptosis). ROS can also interact with macromolecules, inducing DNA damage and epigenetic modifications, disrupting homeostasis. These effects have been studied extensively in vitro and confirmed in vivo. This review explores the oxidative potential of airborne particles and PM-induced ROS-mediated cellular damage observed in vitro, highlighting the link between oxidative stress, inflammation, and cell death modes described in the latest literature. The review also analyzes the effects of ROS on DNA damage, repair, carcinogenicity, and epigenetics. Additionally, the latest developments on the potential of antioxidants to prevent ROS's harmful effects are described, providing future perspectives on the topic.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| | - Nivedita Chatterjee
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Andreia Carvalho
- Nanosafety Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
3
|
Balkrishna A, Sinha S, Pandey A, Singh S, Joshi M, Singh R, Varshney A. In mouse model of mixed granulocytic asthma with corticosteroid refractoriness, Bronchom mitigates airway hyperresponsiveness, inflammation and airway remodeling. Mol Med 2024; 30:120. [PMID: 39129025 PMCID: PMC11318311 DOI: 10.1186/s10020-024-00888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Asthma is a heterogeneous, inflammatory disease with several phenotypes and endotypes. Severe asthmatics often exhibit mixed granulocytosis with reduced corticosteroid sensitivity. Bronchom is a newly developed Ayurvedic prescription medicine, indicated for the treatment of obstructive airway disorders. The purpose of the present study was to evaluate the in-vivo efficacy of Bronchom in mouse model of mixed granulocytic asthma with steroidal recalcitrance. METHODS High-performance thin layer chromatography (HPTLC) and Ultra-high performance liquid chromatography (UHPLC) were employed to identify and quantitate the phytometabolites present in Bronchom. The preclinical effectiveness of Bronchom was assessed in house dust mite (HDM) and Complete Freund's adjuvant (CFA)-induced mixed granulocytic asthma model in mice. High dose of dexamethasone was tested parallelly. Specific-pathogen-free C57BL/6 mice were immunized with HDM and CFA and nineteen days later, they were intranasally challenged with HDM for four consecutive days. Then the mice were challenged with nebulized methacholine to evaluate airway hyperresponsiveness (AHR). Inflammatory cell influx was enumerated in the bronchoalveolar lavage fluid (BALF) followed by lung histology. Additionally, the concentrations of Th2 and pro-inflammatory cytokines was assessed in the BALF by multiplexed immune assay. The mRNA expression of pro-inflammatory cytokines and Mucin 5AC (MUC5AC) was also evaluated in the lung. RESULTS HPTLC fingerprinting and UHPLC quantification of Bronchom revealed the presence of bioactive phytometabolites, namely, rosmarinic acid, gallic acid, methyl gallate, piperine, eugenol and glycyrrhizin. Bronchom effectively reduced AHR driven by HDM-CFA and the influx of total leukocytes, eosinophils and neutrophils in the BALF. In addition, Bronchom inhibited the infiltration of inflammatory cells in the lung as well as goblet cell metaplasia. Further, it also suppressed the elevated levels of Th2 cytokines and pro-inflammatory cytokines in the BALF. Similarly, Bronchom also regulated the mRNA expression of pro-inflammatory cytokines as well as MUC5AC in mice lungs. Reduced effectiveness of a high dose of the steroid, dexamethasone was observed in the model. CONCLUSIONS We have demonstrated for the first time the robust pharmacological effects of an herbo-mineral medicine in an animal model of mixed granulocytic asthma induced by HDM and CFA. The outcomes suggest the potential utility of Bronchom in severe asthmatics with a mixed granulocytic phenotype.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Patanjali UK Trust, Glasgow, UK
| | - Sandeep Sinha
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Anupam Pandey
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Surjeet Singh
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Monali Joshi
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Rani Singh
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India.
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
4
|
Ariyanasab R, Askari VR, Askari R, Baradaran Rahimi V, Hejazi K, Asadi M. The interactive effect of seven weeks aerobic exercise training and piperine against paraquat-induced lung damage in male Wistar rats: Investigating role of oxidative and inflammatory indices. Heliyon 2024; 10:e33241. [PMID: 39022054 PMCID: PMC11252759 DOI: 10.1016/j.heliyon.2024.e33241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
We aimed to evaluate the effects of seven weeks of aerobic exercise training and piperine on paraquat-induced lung damage. Forty-eight male Wistar rats (230 g, six-eight weeks old) were randomly divided into six groups (n = 8): sham, paraquat (5 mg/kg three times a week; intraperitoneally), paraquat + piperine (10 mg/kg/day; orally), paraquat + aerobic exercise training, paraquat + piperine + aerobic exercise training; and paraquat + vitamin E (20 mg/kg/day; orally) as a positive control. Rats were sacrificed on day 50, and both lung tissues were isolated to measure oxidative (MDA), anti-oxidative (GSH), inflammatory (TNF-α), anti-inflammatory (IL-10) markers, and histological evaluations (hematoxylin-eosin staining). The results of the present study revealed that paraquat significantly decreased body weight, GSH, GSH/MDA ratio, IL-10, and IL-10/TNF-α ratio while increasing MDA, TNF-α, and histopathological damage in lung tissue (P < 0.01 to 0.001). In contrast, treatment with all four interventions meaningfully diminished oxidative, inflammatory markers, and histopathological damage while propagating body weight, anti-oxidative and anti-inflammatory markers following the paraquat-induced lung damage (P < 0.05 to P < 0.001). Interestingly, piperine and piperine + exercise training possessed stronger protective effects against paraquat-induced lung damage than exercise training alone (P < 0.01 to 0.001). Treatment with piperine, exercise training, piperine + exercise training, and vitamin E significantly ameliorated paraquat-induced lung damage. Interestingly, the piperine and piperine + exercise training had more protective effects than other groups. Therefore, piperine and the combination of piperine and exercise training may be valuable candidates for preventing lung injuries.
Collapse
Affiliation(s)
- Reyhane Ariyanasab
- Department of Sport Physiology, Faculty of Exercise Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roya Askari
- Department of Sport Physiology, Faculty of Exercise Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Keyvan Hejazi
- Department of Sport Physiology, Faculty of Exercise Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Milad Asadi
- Department of Sport Physiology, Faculty of Exercise Sciences, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
5
|
Cao X, Cheng XW, Liu YY, Dai HW, Gan RY. Inhibition of pathogenic microbes in oral infectious diseases by natural products: Sources, mechanisms, and challenges. Microbiol Res 2024; 279:127548. [PMID: 38016378 DOI: 10.1016/j.micres.2023.127548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
The maintenance of oral health is of utmost importance for an individual's holistic well-being and standard of living. Within the oral cavity, symbiotic microorganisms actively safeguard themselves against potential foreign diseases by upholding a multifaceted equilibrium. Nevertheless, the occurrence of an imbalance can give rise to a range of oral infectious ailments, such as dental caries, periodontitis, and oral candidiasis. Presently, clinical interventions encompass the physical elimination of pathogens and the administration of antibiotics to regulate bacterial and fungal infections. Given the limitations of various antimicrobial drugs frequently employed in dental practice, the rising incidence of oral inflammation, and the escalating bacterial resistance to antibiotics, it is imperative to explore alternative remedies that are dependable, efficacious, and affordable for the prevention and management of oral infectious ailments. There is an increasing interest in the creation of novel antimicrobial agents derived from natural sources, which possess attributes such as safety, cost-effectiveness, and minimal adverse effects. This review provides a comprehensive overview of the impact of natural products on the development and progression of oral infectious diseases. Specifically, these products exert their influences by mitigating dental biofilm formation, impeding the proliferation of oral pathogens, and hindering bacterial adhesion to tooth surfaces. The review also encompasses an examination of the various classes of natural products, their antimicrobial mechanisms, and their potential therapeutic applications and limitations in the context of oral infections. The insights garnered from this review can support the promising application of natural products as viable therapeutic options for managing oral infectious diseases.
Collapse
Affiliation(s)
- Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xing-Wang Cheng
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yin-Ying Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Hong-Wei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore.
| |
Collapse
|
6
|
Üremiş MM, Gürel E, Aslan M, Taşlıdere E. Dexpanthenol protects against nicotine-induced kidney injury by reducing oxidative stress and apoptosis through activation of the AKT/Nrf2/HO-1 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1105-1114. [PMID: 37606756 DOI: 10.1007/s00210-023-02671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
Dexpanthenol (DEX), a subtype of vitamin B5, plays an important role in anabolic reactions, cellular energy and regeneration in the body. Nicotine has been shown to induce kidney damage through the mechanisms of oxidative stress and apoptosis. The purpose of this study was to investigate the potential protective effects of DEX against nicotine-induced kidney damage through modulation of the AKT/Nrf2/HO-1 signaling pathway. Male rats were intraperitoneally administered with 0.5 mg/kg/day nicotine and/or 500 mg/kg/day DEX for 8 weeks. Following administration, renal function tests were conducted on serum samples, and histopathological examinations and analysis of oxidative stress markers and antioxidant enzymes were performed on tissue samples. Protein levels of Akt, Nrf-2, HO-1, Bcl-xL, and Caspase-9 were also evaluated. Nicotine administration resulted in decreased protein levels of p-Akt, Nrf-2, HO-1, and Bcl-xL and increased Caspase-9 protein levels. In addition, nicotine administration caused an increase in MDA, TOS, and OSI levels and a decrease in GSH, GSH-Px, GST, CAT, SOD, and TAS levels. Additionally, BUN and Creatinine levels increased after nicotine administration. DEX administration positively regulated these parameters and brought them closer to control levels. Nicotine-induced kidney injury caused apoptosis and oxidative stress through Caspase-9 activation. DEX effectively prevented nicotine-induced kidney damage by increasing intracellular antioxidant levels and regulating apoptosis through Bcl-xL activation. These findings suggest that DEX has potential as a protective agent against nicotine-induced kidney damage.
Collapse
Affiliation(s)
- Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
| | - Elif Gürel
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Meral Aslan
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Elif Taşlıdere
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
7
|
Ferreira FM, Gomes SV, Carvalho LCF, de Alcantara AC, da Cruz Castro ML, Perucci LO, Pio S, Talvani A, de Abreu Vieira PM, Calsavara AJC, Costa DC. Potential of piperine for neuroprotection in sepsis-associated encephalopathy. Life Sci 2024; 337:122353. [PMID: 38104862 DOI: 10.1016/j.lfs.2023.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
AIMS Sepsis-associated encephalopathy (SAE) is a common complication that increases mortality and leads to long-term cognitive impairment in sepsis survivors. However, no specific or effective therapy has been identified for this complication. Piperine is an alkaloid known for its anti-inflammatory, antioxidant, and neuroprotective properties, which are important characteristics for treatment of SAE. The objective of this study was to evaluate the neuroprotective effect of piperine on SAE in C57BL/6 mice that underwent cecum ligation and perforation surgery (CLP). MAIN METHODS C57BL/6 male mice were randomly assigned to groups that underwent SHAM surgery or CLP. Mice in the CLP group were treated with piperine at doses of 20 or 40 mg/kg for short- (5 days) or long-term (10 days) periods after CLP. KEY FINDINGS Our results revealed that untreated septic animals exhibited increased concentrations of IL-6, TNF, VEGF, MMP-9, TBARS, and NLRP3, and decreased levels of BDNF, sulfhydryl groups, and catalase in the short term. Additionally, the levels of carbonylated proteins and degenerated neuronal cells were increased at both time points. Furthermore, short-term and visuospatial memories were impaired. Piperine treatment reduced MMP-9 activity in the short term and decreased the levels of carbonylated proteins and degenerated neuronal cells in the long term. It also lowered IL-6 and TBARS levels at both time points evaluated. Moreover, piperine increased short-term catalase and long-term BDNF factor levels and improved memory at both time points. SIGNIFICANCE In conclusion, our data demonstrate that piperine exerts a neuroprotective effect on SAE in animals that have undergone CLP.
Collapse
Affiliation(s)
- Flavia Monteiro Ferreira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Sttefany Viana Gomes
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Luana Cristina Faria Carvalho
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Ana Carolina de Alcantara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Maria Laura da Cruz Castro
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Luiza Oliveira Perucci
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Sirlaine Pio
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Paula Melo de Abreu Vieira
- Morphopathology Laboratory, Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Allan Jefferson Cruz Calsavara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Ferrara F, Bondi A, Pula W, Contado C, Baldisserotto A, Manfredini S, Boldrini P, Sguizzato M, Montesi L, Benedusi M, Valacchi G, Esposito E. Ethosomes for Curcumin and Piperine Cutaneous Delivery to Prevent Environmental-Stressor-Induced Skin Damage. Antioxidants (Basel) 2024; 13:91. [PMID: 38247515 PMCID: PMC10812558 DOI: 10.3390/antiox13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Diesel particulate matter is one of the most dangerous environmental stressors affecting human health. Many plant-derived compounds with antioxidant and anti-inflammatory properties have been proposed to protect the skin from pollution damage. Curcumin (CUR) has a plethora of pharmacological activities, including anticancer, antimicrobial, anti-inflammatory and antioxidant. However, it has low bioavailability due to its difficult absorption and rapid metabolism and elimination. CUR encapsulation in nanotechnological systems and its combination with biopotentiators such as piperine (PIP) can improve its pharmacokinetics, stability and activity. In this study, ethosomes (ETs) were investigated for CUR and PIP delivery to protect the skin from damage induced by diesel particulate matter. ETs were produced by different strategies and characterized for their size distribution by photon correlation spectroscopy, for their morphology by transmission electron microscopy, and for their drug encapsulation efficiency by high-performance liquid chromatography. Franz cells enabled us to evaluate in vitro the drug diffusion from ETs. The results highlighted that ETs can promote the skin permeation of curcumin. The studies carried out on their antioxidant activity demonstrated an increase in the antioxidant power of CUR using a combination of CUR and PIP separately loaded in ETs, suggesting their possible application for the prevention of skin damage due to exogenous stressors. Ex vivo studies on human skin explants have shown the suitability of drug-loaded ETs to prevent the structural damage to the skin induced by diesel engine exhaust exposure.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (A.B.); (W.P.); (C.C.); (M.S.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (A.B.); (W.P.); (C.C.); (M.S.)
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (A.B.); (W.P.); (C.C.); (M.S.)
| | - Catia Contado
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (A.B.); (W.P.); (C.C.); (M.S.)
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (A.B.); (S.M.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (A.B.); (S.M.)
| | - Paola Boldrini
- Center of Electron Microscopy, University of Ferrara, 44121 Ferrara, Italy;
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (A.B.); (W.P.); (C.C.); (M.S.)
| | - Leda Montesi
- Cosmetology Center, University of Ferrara, 44121 Ferrara, Italy;
| | - Mascia Benedusi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Giuseppe Valacchi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
- Animal Science Department, NC Research Campus, Plants for Human Health Institute, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 26723, Republic of Korea
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (A.B.); (W.P.); (C.C.); (M.S.)
| |
Collapse
|
9
|
Singh A, Rakshit D, Kumar A, Mishra A, Shukla R. Vitamin E modified polyamidoamine dendrimer for piperine delivery to alleviate Aβ 1-42 induced neurotoxicity in Balb/c mice model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2232-2254. [PMID: 37379243 DOI: 10.1080/09205063.2023.2230857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
In Alzheimer's disease (AD), amyloid beta (Aβ1-42) aggregate formation and neurofibrillary tangles are major pathological hallmarks which are related to neurodegeneration in the brain. To alleviate Aβ1-42 fibrils toxicity vitamin E derivative tocopheryl polyethylene glycol succinate (TPGS) was conjugated with polyamidoamine (PAMAM) dendrimer through carbodiimide reaction to synthesize TPGS-PAMAM. This TPGS-PAMAM was employed to entrap neuroprotective agent piperine (PIP) through an anti-solvent technique to prepare PIP-TPGS-PAMAM. The dendrimer conjugate was prepared to reduce Aβ1-42 induced neurotoxicity and increase acetylcholine levels in AD mice models. The synthesis of dendrimer conjugate was characterized through proton nuclear magnetic resonance (NMR) and Trinitrobenzene sulphonic acid assay (TNBS). Physical characterization of dendrimers conjugates were done through various spectroscopic, thermal and microscopy based techniques. PIP-TPGS-PAMAM showed 43.25 nm particle size with PIP percentage encapsulation efficiency of 80.35%. Further Aβ1-42 fibril disaggregation effect of nanocarrier was evaluated using Thioflavin-T (ThT) assay and circular dichroism (CD). The neuroprotection studies for PIP-TPGS-PAMAM was evaluated against neurotoxicity induced using Aβ1-42 intracerebroventricular (ICV) injected in Balb/c mice. The group of mice administered with PIP-TPGS-PAMAM exhibited an increase in the proportion of random alternations in T-maze test and novel object recognition test (NORT) exhibited an increase in working memory cognitive functions. The biochemical and histopathological analysis revealed PIP-TPGS-PAMAM treated groups enhanced acetylcholine levels, reduced ROS and Aβ1-42 content significantly. Our findings imply that PIP-TPGS-PAMAM enhanced memory and reduced cognitive deficit in mice brain induced by Aβ1-42 toxicity.
Collapse
Affiliation(s)
- Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, India
| | - Ankit Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| |
Collapse
|