1
|
Haney SL, Chhonker YS, Rashid M, Murry DJ, Holstein SA. Structure-activity relationship of isoprenoid triazole bisphosphonate-based geranylgeranyl diphosphate synthase inhibitors: Effects on pharmacokinetics, biodistribution, and hepatic transporters. Drug Metab Dispos 2025; 53:100038. [PMID: 40024136 DOI: 10.1016/j.dmd.2025.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 03/04/2025] Open
Abstract
Geranylgeranyl diphosphate synthase produces the isoprenoid geranylgeranyl diphosphate, which is used in protein geranylgeranylation. Our previous work illustrates that geranylgeranyl diphosphate synthase inhibitors (GGSIs) disrupt Rab-mediated protein trafficking in cells, inducing the unfolded protein response pathway and apoptosis. Structure-function studies of our GGSIs, which are isoprenoid triazole bisphosphonates, have revealed a complex relationship between GGSI structure and enzymatic, cellular, and in vivo activities. The dose-limiting toxicity of this family of GGSIs is hepatic, and the mechanisms underlying their hepatic uptake are unexplored. Here, we evaluate the pharmacokinetics (PK) and biodistribution of a pair of potent GGSIs that are olefin isomers (homogeranyl [HG] and homoneryl [HN]). We investigate whether these isomers, as well as their a-methylated analogs (HG-me and HN-me), are substrates for key hepatic transporters and explore the effects of these GGSIs on the expression of a panel of hepatic transporters and cytochrome P450s. The PK/biodistribution studies revealed that both systemic exposure and liver levels of HG were significantly higher than that of HN across multiple time points. Conversely, HN was present at 4-fold higher concentrations in the bile at 2 hours postinjection relative to HG. HG-me and HN-me, but not HG or HN, were determined to be substrates of hepatic transport proteins OATP1B1 and OATP1B3. While the hepatic expression of several transporters and cytochrome P450 were altered by GGSI treatment, no significant differences in expression patterns between pairs of olefin isomers were observed. Collectively, these studies reveal that GGSI structure, including olefin stereochemistry, impacts PK profile, biodistribution, and hepatic transporter affinity. SIGNIFICANCE STATEMENT: Our understanding of the in vivo structure-activity relationship of our novel geranylgeranyl diphosphate synthase inhibitors has expanded, demonstrating that isoprenoid olefin stereochemistry impacts pharmacokinetic and biodistribution patterns and that other modifications impact transporter affinity. These studies reveal the underlying complexity of the mechanisms regulating hepatic exposure to these agents. Future studies will focus on optimizing tumor-directed geranylgeranyl diphosphate synthase inhibitor delivery while minimizing hepatic uptake.
Collapse
Affiliation(s)
- Staci L Haney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mamunur Rashid
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sarah A Holstein
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
2
|
Eiken AP, Smith AL, Skupa SA, Schmitz E, Rana S, Singh S, Kumar S, Mallareddy JR, de Cubas AA, Krishna A, Kalluchi A, Rowley MJ, D'Angelo CR, Lunning MA, Bociek RG, Vose JM, Natarajan A, El-Gamal D. Novel Spirocyclic Dimer, SpiD3, Targets Chronic Lymphocytic Leukemia Survival Pathways with Potent Preclinical Effects. CANCER RESEARCH COMMUNICATIONS 2024; 4:1328-1343. [PMID: 38687198 PMCID: PMC11110724 DOI: 10.1158/2767-9764.crc-24-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NFκB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacologic agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton tyrosine kinase (BTK) inhibitors (e.g., ibrutinib) have enhanced patient survival. However, resistance mechanisms wherein tumor cells bypass BTK inhibition through acquired BTK mutations, and/or activation of alternative survival mechanisms have rendered ibrutinib ineffective, imposing the need for novel therapeutics. We evaluated SpiD3, a novel spirocyclic dimer, in CLL cell lines, patient-derived CLL samples, ibrutinib-resistant CLL cells, and in the Eµ-TCL1 mouse model. Our integrated multi-omics and functional analyses revealed BCR signaling, NFκB signaling, and endoplasmic reticulum stress among the top pathways modulated by SpiD3. This was accompanied by marked upregulation of the UPR and inhibition of global protein synthesis in CLL cell lines and patient-derived CLL cells. In ibrutinib-resistant CLL cells, SpiD3 retained its antileukemic effects, mirrored in reduced activation of key proliferative pathways (e.g., PRAS, ERK, MYC). Translationally, we observed reduced tumor burden in SpiD3-treated Eµ-TCL1 mice. Our findings reveal that SpiD3 exploits critical vulnerabilities in CLL cells including NFκB signaling and the UPR, culminating in profound antitumor properties independent of TME stimuli. SIGNIFICANCE SpiD3 demonstrates cytotoxicity in CLL partially through inhibition of NFκB signaling independent of tumor-supportive stimuli. By inducing the accumulation of unfolded proteins, SpiD3 activates the UPR and hinders protein synthesis in CLL cells. Overall, SpiD3 exploits critical CLL vulnerabilities (i.e., the NFκB pathway and UPR) highlighting its use in drug-resistant CLL.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Humans
- Animals
- Mice
- Signal Transduction/drug effects
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Cell Line, Tumor
- Unfolded Protein Response/drug effects
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Drug Resistance, Neoplasm/drug effects
- NF-kappa B/metabolism
- Spiro Compounds/pharmacology
- Spiro Compounds/therapeutic use
- Cell Survival/drug effects
- Tumor Microenvironment/drug effects
- Receptors, Antigen, B-Cell/metabolism
- Cell Proliferation/drug effects
Collapse
Affiliation(s)
- Alexandria P. Eiken
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Audrey L. Smith
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sydney A. Skupa
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Elizabeth Schmitz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Siddhartha Kumar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jayapal Reddy Mallareddy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aguirre A de Cubas
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Akshay Krishna
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - M. Jordan Rowley
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Christopher R. D'Angelo
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Matthew A. Lunning
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - R. Gregory Bociek
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Julie M. Vose
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dalia El-Gamal
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
4
|
Tennakoon M, Thotamune W, Payton JL, Karunarathne A. CaaX-motif-adjacent residues influence G protein gamma (Gγ) prenylation under suboptimal conditions. J Biol Chem 2023; 299:105269. [PMID: 37739036 PMCID: PMC10590752 DOI: 10.1016/j.jbc.2023.105269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023] Open
Abstract
Prenylation is an irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Dysregulation of prenylation contributes to multiple disorders, including cancers and vascular and neurodegenerative diseases. Prenyltransferases tether isoprenoid lipids to proteins via a thioether linkage during prenylation. Pharmacological inhibition of the lipid synthesis pathway by statins is a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential inhibition. We examined the prenylation of carboxy-terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to prenylation and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide, statin sensitivity, and extent of prenylation. Our results also show a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings indicate a plausible mechanism allowing for statins to differentially perturb heterotrimeric G protein signaling in cells depending on their Gγ-subtype composition. Our results may also provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA; Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, Missouri, USA
| | - Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA; Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, Missouri, USA
| | - John L Payton
- Department of Chemistry, Kenyon College, Gambier, Ohio, USA
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, Missouri, USA; Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, Missouri, USA.
| |
Collapse
|
5
|
Torcasio R, Gallo Cantafio ME, Ikeda RK, Ganino L, Viglietto G, Amodio N. Lipid metabolic vulnerabilities of multiple myeloma. Clin Exp Med 2023; 23:3373-3390. [PMID: 37639069 PMCID: PMC10618328 DOI: 10.1007/s10238-023-01174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy worldwide, characterized by abnormal proliferation of malignant plasma cells within a tumor-permissive bone marrow microenvironment. Metabolic dysfunctions are emerging as key determinants in the pathobiology of MM. In this review, we highlight the metabolic features of MM, showing how alterations in various lipid pathways, mainly involving fatty acids, cholesterol and sphingolipids, affect the growth, survival and drug responsiveness of MM cells, as well as their cross-talk with other cellular components of the tumor microenvironment. These findings will provide a new path to understanding the mechanisms underlying how lipid vulnerabilities may arise and affect the phenotype of malignant plasma cells, highlighting novel druggable pathways with a significant impact on the management of MM.
Collapse
Affiliation(s)
- Roberta Torcasio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Department of Biology, Ecology and Heart Sciences, University of Calabria, Arcavacata Di Rende, Cosenza, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Raissa Kaori Ikeda
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
- Centro Universitário São Camilo, São Paulo, Brazil
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Viale Europa, Campus Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|
6
|
Supuran CT. Progress of Section "Biochemistry" in 2022. Int J Mol Sci 2023; 24:ijms24065873. [PMID: 36982946 PMCID: PMC10056791 DOI: 10.3390/ijms24065873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Of more than 16,400 papers published in 2022 in International Journal of Molecular Sciences [...].
Collapse
Affiliation(s)
- Claudiu T Supuran
- Pharmaceutical and Nutraceutical Section, Department of NEUROFARBA, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|