1
|
Chen Z, Hu Y, Mei H. Harmonizing the symphony of chimeric antigen receptor T cell immunotherapy with the elegance of biomaterials. Trends Biotechnol 2024:S0167-7799(24)00211-7. [PMID: 39181760 DOI: 10.1016/j.tibtech.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Chimeric antigen receptor T cell (CAR-T) immunotherapy has become a heated field of cancer research, demonstrating revolutionary efficacy in refractory and relapsed hematologic malignancies. However, CAR-T therapy has still encountered tough challenges, including complicated and lengthy manufacturing procedures, mediocre targeted delivery, limited therapeutic effect against solid tumors and difficulties in real-time in vivo monitoring. To overcome these limitations, various versatile biomaterials have been used in the above aspects and have improved CAR-T therapy impressively. This review mainly summarizes the latest research progress of biomaterials promoting CAR-T therapy in manufacturing, enhancing targeted delivery and tumor infiltration, and dramatic in vivo tracking to provide new insights and inspiration for clinical treatment.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
2
|
Wiedemann G, Bacher U, Joncourt R, Solly F, Widmer CC, Zeerleder S, Novak U, Pabst T, Porret NA. A Comprehensive ddPCR Strategy for Sensitive and Reliable Monitoring of CAR-T Cell Kinetics in Clinical Applications. Int J Mol Sci 2024; 25:8556. [PMID: 39201242 PMCID: PMC11354041 DOI: 10.3390/ijms25168556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
In this study, we present the design, implementation, and successful use of digital droplet PCR (ddPCR) for the monitoring of chimeric antigen receptor T-cell (CAR-T) expansion in patients with B-cell malignancies treated with different CAR-T products at our clinical center. Initially, we designed a specific and highly sensitive ddPCR assay targeting the junction between the 4-1BB and CD3ζ domains of tisa-cel, normalized with RPP30, and validated it using blood samples from the first tisa-cel-treated patient in Switzerland. We further compared this assay with a published qPCR (quantitative real-time PCR) design. Both assays showed reliable quantification of CAR-T copies down to 20 copies/µg DNA. The reproducibility and precision were confirmed through extensive testing and inter-laboratory comparisons. With the introduction of other CAR-T products, we also developed a corresponding ddPCR assay targeting axi-cel and brexu-cel, demonstrating high specificity and sensitivity with a limit of detection of 20 copies/µg DNA. These assays are suitable for CAR-T copy number quantification across multiple sample types, including peripheral blood, bone marrow, and lymph node biopsy material, showing robust performance and indicating the presence of CAR-T cells not only in the blood but also in target tissues. Longitudinal monitoring of CAR-T cell kinetics in 141 patients treated with tisa-cel, axi-cel, or brexu-cel revealed significant expansion and long-term persistence. Peak expansion correlated with clinical outcomes and adverse effects, as is now well known. Additionally, we quantified the CAR-T mRNA expression, showing a high correlation with DNA copy numbers and confirming active transgene expression. Our results highlight the quality of ddPCR for CAR-T monitoring, providing a sensitive, precise, and reproducible method suitable for clinical applications. This approach can be adapted for future CAR-T products and will support the monitoring and the management of CAR-T cell therapies.
Collapse
Affiliation(s)
- Gertrud Wiedemann
- Department of Hematology and Central Hematological Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (G.W.); (U.B.); (R.J.)
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Ulrike Bacher
- Department of Hematology and Central Hematological Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (G.W.); (U.B.); (R.J.)
| | - Raphael Joncourt
- Department of Hematology and Central Hematological Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (G.W.); (U.B.); (R.J.)
| | - Françoise Solly
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland;
| | - Corinne C. Widmer
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland;
- Department of Hematology, University Hospital of Basel, 4031 Basel, Switzerland
- Laboratory Medicine, Diagnostic Hematology, 4031 Basel, Switzerland
| | - Sacha Zeerleder
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Urban Novak
- Department of Medical Oncology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland; (U.N.); (T.P.)
- Center for Hemato-Oncology, University Cancer Center, 3010 Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland; (U.N.); (T.P.)
- Center for Hemato-Oncology, University Cancer Center, 3010 Bern, Switzerland
| | - Naomi A. Porret
- Department of Hematology and Central Hematological Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (G.W.); (U.B.); (R.J.)
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland;
| |
Collapse
|
3
|
Hays A, Wissel M, Colletti K, Soon R, Azadeh M, Smith J, Doddareddy R, Chalfant M, Adamowicz W, Ramaswamy SS, Dholakiya SL, Guelman S, Gullick B, Durham J, Rennier K, Nagilla P, Muruganandham A, Diaz M, Tierney C, John K, Valentine J, Lockman T, Liu HY, Moritz B, Ouedraogo JP, Piche MS, Smet M, Murphy J, Koenig K, Zybura A, Vyhlidal C, Mercier J, Jani N, Kubista M, Birch D, Morse K, Johansson O. Recommendations for Method Development and Validation of qPCR and dPCR Assays in Support of Cell and Gene Therapy Drug Development. AAPS J 2024; 26:24. [PMID: 38316745 DOI: 10.1208/s12248-023-00880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024] Open
Abstract
The emerging use of qPCR and dPCR in regulated bioanalysis and absence of regulatory guidance on assay validations for these platforms has resulted in discussions on lack of harmonization on assay design and appropriate acceptance criteria for these assays. Both qPCR and dPCR are extensively used to answer bioanalytical questions for novel modalities such as cell and gene therapies. Following cross-industry conversations on the lack of information and guidelines for these assays, an American Association of Pharmaceutical Scientists working group was formed to address these gaps by bringing together 37 industry experts from 24 organizations to discuss best practices to gain a better understanding in the industry and facilitate filings to health authorities. Herein, this team provides considerations on assay design, development, and validation testing for PCR assays that are used in cell and gene therapies including (1) biodistribution; (2) transgene expression; (3) viral shedding; (4) and persistence or cellular kinetics of cell therapies.
Collapse
Affiliation(s)
- Amanda Hays
- BioAgilytix Laboratories, Durham, North Carolina, USA.
| | - Mark Wissel
- Eurofins Viracor BioPharma Services, Inc., Lenexa, Kansas, USA
| | | | - Russell Soon
- BioMarin Pharmaceutical Inc., Novato, California, USA
| | - Mitra Azadeh
- Ultragenyx Pharmaceutical Inc., Novato, Calfornia, USA
| | | | | | | | - Wendy Adamowicz
- PPD Clinical Research, Thermo Fisher Scientific, Richmond, Virginia, USA
| | | | | | | | - Bryan Gullick
- BioAgilytix Laboratories, Durham, North Carolina, USA
| | | | | | - Pruthvi Nagilla
- Asher Biotherapeutics, Inc., South San Francisco, California, USA
| | | | - Manisha Diaz
- Eurofins Viracor BioPharma Services, Inc., Lenexa, Kansas, USA
| | | | | | | | - Timothy Lockman
- PPD Clinical Research, Thermo Fisher Scientific, Richmond, Virginia, USA
| | - Hsing-Yin Liu
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | | | | | | | - Jacqueline Murphy
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Kaylyn Koenig
- Altasciences Preclinical Seattle LLC, Everett, Washington, USA
| | - Agnes Zybura
- Labcorp Drug Development, Greenfield, Indiana, USA
| | - Carrie Vyhlidal
- KCAS Bioanalytical and Biomarker Services, Shawnee, Kansas, USA
| | | | - Niketa Jani
- BioAgilytix Laboratories, Boston, Massachusetts, USA
| | - Mikael Kubista
- Institute of Biotechnology Czech Academy of Sciences, Prague, Czech Republic
| | - Donald Birch
- Altasciences Preclinical Seattle LLC, Everett, Washington, USA
| | - Karlin Morse
- Altasciences Preclinical Seattle LLC, Everett, Washington, USA
| | | |
Collapse
|
4
|
Papa S, Ortolani C, Fernández P, O’Connor JE. Flow Cytometry and Its Applications to Molecular Biology and Diagnosis 2.0. Int J Mol Sci 2023; 24:16215. [PMID: 38003405 PMCID: PMC10671029 DOI: 10.3390/ijms242216215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Flow cytometry is a single-cell based technology aimed to quantify the scattering of light and the emission of multiple fluorescence signals by individual cells, biological vesicles, or synthetic microscopical particles when examined one by one at high speed using lasers or other suitable illumination sources [...].
Collapse
Affiliation(s)
- Stefano Papa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.P.)
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.P.)
| | - Paula Fernández
- Institute for Laboratory Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland;
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, The University of Valencia and Principe Felipe Research Center, 46010 Valencia, Spain
| |
Collapse
|
5
|
Mody H, Ogasawara K, Zhu X, Miles D, Shastri PN, Gokemeijer J, Liao MZ, Kasichayanula S, Yang TY, Chemuturi N, Gupta S, Jawa V, Upreti VV. Best Practices and Considerations for Clinical Pharmacology and Pharmacometric Aspects for Optimal Development of CAR-T and TCR-T Cell Therapies: An Industry Perspective. Clin Pharmacol Ther 2023; 114:530-557. [PMID: 37393588 DOI: 10.1002/cpt.2986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
With the promise of a potentially "single dose curative" paradigm, CAR-T cell therapies have brought a paradigm shift in the treatment and management of hematological malignancies. Both CAR-T and TCR-T cell therapies have also made great progress toward the successful treatment of solid tumor indications. The field is rapidly evolving with recent advancements including the clinical development of "off-the-shelf" allogeneic CAR-T therapies that can overcome the long and difficult "vein-to-vein" wait time seen with autologous CAR-T therapies. There are unique clinical pharmacology, pharmacometric, bioanalytical, and immunogenicity considerations and challenges in the development of these CAR-T and TCR-T cell therapies. Hence, to help accelerate the development of these life-saving therapies for the patients with cancer, experts in this field came together under the umbrella of International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) to form a joint working group between the Clinical Pharmacology Leadership Group (CPLG) and the Translational and ADME Sciences Leadership Group (TALG). In this white paper, we present the IQ consortium perspective on the best practices and considerations for clinical pharmacology and pharmacometric aspects toward the optimal development of CAR-T and TCR-T cell therapies.
Collapse
Affiliation(s)
- Hardik Mody
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | - Ken Ogasawara
- Clinical Pharmacology, Pharmacometrics, Disposition and Bioanalysis, Bristol Myers Squibb, Lawrence Township, New Jersey, USA
| | - Xu Zhu
- Quantitative Clinical Pharmacology, AstraZeneca, Boston, Massachusetts, USA
| | - Dale Miles
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | | | - Jochem Gokemeijer
- Discovery Biotherapeutics, Bristol Myers Squibb, Cambridge, Massachusetts, USA
| | - Michael Z Liao
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | | | - Tong-Yuan Yang
- Bioanalytical Discovery and Development Sciences, Janssen R&D, LLC, Spring House, Pennsylvania, USA
| | - Nagendra Chemuturi
- Clinical Pharmacology, DMPK, Pharmacometrics, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Swati Gupta
- Development Biological Sciences, Immunology, AbbVie, Irvine, California, USA
| | - Vibha Jawa
- Clinical Pharmacology, Pharmacometrics, Disposition and Bioanalysis, Bristol Myers Squibb, Lawrence Township, New Jersey, USA
| | - Vijay V Upreti
- Clinical Pharmacology, Modeling & Simulation, Amgen, South San Francisco, California, USA
| |
Collapse
|
6
|
Masilamani M, Jawa V, Dai Y, Das R, Park A, Lamba M, Wu F, Zheng X, Lu E, Gleason C, Mack T, Mora J, Surapaneni S. Bioanalytical Methods for Characterization of CAR-T Cellular Kinetics: Comparison of PCR Assays and Matrices. Clin Pharmacol Ther 2023; 114:664-672. [PMID: 37422675 DOI: 10.1002/cpt.2991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Recently, multiple chimeric antigen receptor T-cell (CAR-T)-based therapies have been approved for treating hematological malignancies, targeting CD19 and B-cell maturation antigen. Unlike protein or antibody therapies, CAR-T therapies are "living cell" therapies whose pharmacokinetics are characterized by expansion, distribution, contraction, and persistence. Therefore, this unique modality requires a different approach for quantitation compared with conventional ligand binding assays implemented for most biologics. Cellular (flow cytometry) or molecular assays (polymerase chain reaction (PCR)) can be deployed with each having unique advantages and disadvantages. In this article, we describe the molecular assays utilized: quantitative PCR (qPCR), which was the initial platform used to estimate transgene copy numbers and more recently droplet digital PCR (ddPCR) which quantitates the absolute copy numbers of CAR transgene. The comparability of the two methods in patient samples and of each method across different matrices (isolated CD3+ T-cells or whole blood) was also performed. The results show a good correlation between qPCR and ddPCR for the amplification of same gene in clinical samples from a CAR-T therapy trial. In addition, our studies show that the qPCR-based amplification of transgene levels was well-correlated, independent of DNA sources (either CD3+ T-cells or whole blood). Our results also highlight that ddPCR can be a better platform for monitoring samples at the early phase of CAR-T dosing prior to expansion and during long-term monitoring as they can detect samples with very low copy numbers with high sensitivity, in addition to easier implementation and sample logistics.
Collapse
Affiliation(s)
- Madhan Masilamani
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Vibha Jawa
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Yanshan Dai
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Romita Das
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Alice Park
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Manisha Lamba
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Fan Wu
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Xirong Zheng
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Edwin Lu
- Global Biometrics and Data Sciences, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Carol Gleason
- Global Biometrics and Data Sciences, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Tim Mack
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Johanna Mora
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Sekhar Surapaneni
- Department of Clinical Pharmacology, Pharmacometrics, Disposition, and Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| |
Collapse
|
7
|
Schröder HM, Niebergall-Roth E, Norrick A, Esterlechner J, Ganss C, Frank MH, Kluth MA. Drug Regulatory-Compliant Validation of a qPCR Assay for Bioanalysis Studies of a Cell Therapy Product with a Special Focus on Matrix Interferences in a Wide Range of Organ Tissues. Cells 2023; 12:1788. [PMID: 37443822 PMCID: PMC10340683 DOI: 10.3390/cells12131788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Quantitative polymerase chain reaction (qPCR) has emerged as an important bioanalytical method for assessing the pharmacokinetics of human-cell-based medicinal products after xenotransplantation into immunodeficient mice. A particular challenge in bioanalytical qPCR studies is that the different tissues of the host organism can affect amplification efficiency and amplicon detection to varying degrees, and ignoring these matrix effects can easily cause a significant underestimation of the true number of target cells in a sample. Here, we describe the development and drug regulatory-compliant validation of a TaqMan® qPCR assay for the quantification of mesenchymal stromal cells in the range of 125 to 20,000 cells/200 µL lysate via the amplification of a human-specific, highly repetitive α-satellite DNA sequence of the chromosome 17 centromere region HSSATA17. An assessment of matrix effects in 14 different mouse tissues and blood revealed a wide range of spike recovery rates across the different tissue types, from 11 to 174%. Based on these observations, we propose performing systematic spike-and-recovery experiments during assay validation and correcting for the effects of the different tissue matrices on cell quantification in subsequent bioanalytical studies by multiplying the back-calculated cell number by tissue-specific factors derived from the inverse of the validated percent recovery rate.
Collapse
Affiliation(s)
| | | | | | | | | | - Markus H. Frank
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | | |
Collapse
|