1
|
Tsakiris DA, Gavriilaki E, Chanou I, Meyer SC. Hemostasis and complement in allogeneic hematopoietic stem cell transplantation: clinical significance of two interactive systems. Bone Marrow Transplant 2024; 59:1349-1359. [PMID: 39004655 PMCID: PMC11452340 DOI: 10.1038/s41409-024-02362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Hematopoietic stem cell transplantation (HCT) represents a curative treatment option for certain malignant and nonmalignant hematological diseases. Conditioning regimens before HCT, the development of graft-versus-host disease (GVHD) in the allogeneic setting, and delayed immune reconstitution contribute to early and late complications by inducing tissue damage or humoral alterations. Hemostasis and/or the complement system are biological regulatory defense systems involving humoral and cellular reactions and are variably involved in these complications after allogeneic HCT. The hemostasis and complement systems have multiple interactions, which have been described both under physiological and pathological conditions. They share common tissue targets, such as the endothelium, which suggests interactions in the pathogenesis of several serious complications in the early or late phase after HCT. Complications in which both systems interfere with each other and thus contribute to disease pathogenesis include transplant-associated thrombotic microangiopathy (HSCT-TMA), sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), and GVHD. Here, we review the current knowledge on changes in hemostasis and complement after allogeneic HCT and how these changes may define clinical impact.
Collapse
Affiliation(s)
| | - Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chanou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece
| | - Sara C Meyer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Gupta D, Moule P, Ranjan V, Kotwal J, Khillan K, Saraf A, Langer S, Prakhar P, Gupta N. Clinical Profile, Treatment and Outcome of Thrombotic Thrombocytopenia Purpura (TTP) in Rituximab Era- an Experience from Tertiary Care Centre from North India. Indian J Hematol Blood Transfus 2024; 40:655-659. [PMID: 39469158 PMCID: PMC11512964 DOI: 10.1007/s12288-024-01775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 10/30/2024] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a microangiopathic hemolytic anemia (MAHA) resulting from severe deficiency of ADAMTS13. TTP is an acute medical emergency which requires early treatment with therapeutic plasma exchange. With the early use of Rituximab along with PLEX, early response is achieved and relapse rate has gone down. There is lack of published data from India regarding treatment and outcome of TTP. We retrospectively analyzed our data of 21 patients of TTP including 4 patients who had TA-TMA. TTP patients were treated with TPE, pulse methylprednisolone and rituximab. After a median follow up of 57.5 months overall survival in TTP patients was 82.3% in our study and one patient relapsed twice but again responded to same treatment. Relapse free survival was 92.8%. The mortality rate in our study in TTP patients was (3/17) 17.6%. The total response rate was 82.3% (14/17). Out of 4 patients of TA-TMA, Only 33.3% patients responded to plasma exchange in TA-TMA while two patients died (2/4) 50%. Immediate TPE and early rituximab are associated with improved survival in TTP patients, however TA-TMA still remains a significant challenge for transplant physicians and more research is needed in guiding the therapy.
Collapse
Affiliation(s)
- Deepika Gupta
- Department of Clinical Haematology and BMT, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, 110060 India
| | - Priyanka Moule
- Department of Clinical Haematology and BMT, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, 110060 India
| | - Vivek Ranjan
- Department of Blood Transfusion Medicine, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, 11006 India
| | - Jyoti Kotwal
- Department of Haematology, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, 110060 India
| | - Kamini Khillan
- Department of Blood Transfusion Medicine, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, 11006 India
| | - Amrita Saraf
- Department of Haematology, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, 110060 India
| | - Sabina Langer
- Department of Haematology, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, 110060 India
| | - Pallavi Prakhar
- Department of Haematology, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, 110060 India
| | - Nitin Gupta
- Department of Clinical Haematology and BMT, Sir Ganga Ram Hospital, Old Rajinder Nagar, New Delhi, 110060 India
| |
Collapse
|
3
|
Posado-Domínguez L, Chamorro AJ, Del Barco-Morillo E, Martín-Galache M, Bueno-Sacristán D, Fonseca-Sánchez E, Olivares-Hernández A. Cancer-Associated Thrombotic Microangiopathy: Literature Review and Report of Five Cases. Life (Basel) 2024; 14:865. [PMID: 39063619 PMCID: PMC11278215 DOI: 10.3390/life14070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Thrombotic microangiopathy (TMA) is an anatomopathological lesion mediated by endothelial dysfunction and characterized by the creation of microthrombi in small vessels. In patients with cancer, it may be due to toxicity secondary to chemotherapy, tumor embolization, or hematopoietic progenitor transplantation. Cancer-associated TMA is an underestimated entity that generally appears in the final stages of the disease, although it may also be the initial manifestation of an underlying cancer. Support treatment is necessary in all cases and, depending on the cause, different targeted therapies may be used. The prognosis is very poor. In this article we present a comprehensive review of the existing literature on the physiological mechanisms of cancer-associated TMA. Afterwards, five clinical cases will be presented of patients who developed TMA and were diagnosed in our Department in 2023. We present a discussion of the different causes that triggered the condition, the possible reasons behind the underestimation of this pathology, and the measures that may be adopted.
Collapse
Affiliation(s)
- L. Posado-Domínguez
- Medical Oncology Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Biomedical Institute Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - A.-J. Chamorro
- Biomedical Institute Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Internal Medicine Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Faculty of Medicine, University of Salamanca, 37008 Salamanca, Spain
| | - E. Del Barco-Morillo
- Medical Oncology Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Biomedical Institute Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Faculty of Medicine, University of Salamanca, 37008 Salamanca, Spain
| | - M. Martín-Galache
- Biomedical Institute Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Pediatrics Department, Pediatrics Oncology Section, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - D. Bueno-Sacristán
- Anatomical Pathology Department, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - E. Fonseca-Sánchez
- Medical Oncology Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Biomedical Institute Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Faculty of Medicine, University of Salamanca, 37008 Salamanca, Spain
| | - A. Olivares-Hernández
- Medical Oncology Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Biomedical Institute Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
4
|
Yamada S, Sakai K, Kubo M, Okumura H, Asakura H, Miyamoto T, Matsumoto M. Excessive cleavage of von Willebrand factor multimers by ADAMTS13 may predict the progression of transplant-associated thrombotic microangiopathy. Res Pract Thromb Haemost 2024; 8:102517. [PMID: 39247211 PMCID: PMC11378204 DOI: 10.1016/j.rpth.2024.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 09/10/2024] Open
Abstract
Background Transplant-associated thrombotic microangiopathy (TA-TMA) is a fatal complication of hematopoietic stem cell transplantation and is characterized by severe thrombocytopenia, hemolytic anemia, and organ dysfunction. In response to several possible triggers, dynamic multimetric change in von Willebrand factor (VWF) may contribute to inducing microthrombi in circulation in TA-TMA. Objectives By performing VWF multimer analysis and measuring VWF-degradation product (DP), we unraveled the relationship between multimeric changes in circulating VWF and the pathogenesis of TA-TMA. Methods This study analyzed 135 plasma samples from 14 patients who underwent allogeneic hematopoietic stem cell transplantation at a single institute. VWF-associated markers, namely VWF:antigen (VWF:Ag), VWF-DP/VWF:Ag ratio, VWF:ristocetin cofactor activity, VWF:ristocetin cofactor activity/VWF:Ag ratio, and ADAMTS13 activity, were analyzed in these samples collected every 7 days. Results There were 2 patients with definite thrombotic microangiopathy (TMA) and 6 patients who presented with probable TMA that did not progress to definite TMA. Each plasma sample was classified into 3 groups: definite TMA, probable TMA, and non-TMA. VWF multimer analysis showed the absence of high-molecular-weight VWF multimers in probable TMA, whereas the appearance of unusually large VWF multimers was observed in definite TMA. The median value of the VWF-DP/VWF:Ag ratio in probable TMA was elevated to 4.17, suggesting that excessive cleavage of VWF multimers by VWF cleaving enzyme, ADAMTS13, resulted in the loss of high-molecular-weight VWF multimers. Conclusion During the transition from probable to definite TMA, drastic VWF multimer changes imply a switch from bleeding to thrombotic tendencies. Extensive VWF-DP and VWF multimer analyses provided novel insights.
Collapse
Affiliation(s)
- Shinya Yamada
- Department of Hematology, Kanazawa University, Kanazawa City, Ishikawa, Japan
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara City, Nara, Japan
- Department of Hematology, Toyama Prefectural Central Hospital, Toyama City, Toyama, Japan
| | - Kazuya Sakai
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara City, Nara, Japan
| | - Masayuki Kubo
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara City, Nara, Japan
- Department of Hematology, Nara Medical University, Kashihara City, Nara, Japan
| | - Hirokazu Okumura
- Department of Hematology, Toyama Prefectural Central Hospital, Toyama City, Toyama, Japan
| | - Hidesaku Asakura
- Department of Hematology, Kanazawa University, Kanazawa City, Ishikawa, Japan
| | - Toshihiro Miyamoto
- Department of Hematology, Kanazawa University, Kanazawa City, Ishikawa, Japan
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara City, Nara, Japan
- Department of Hematology, Nara Medical University, Kashihara City, Nara, Japan
| |
Collapse
|
5
|
Fageräng B, Cyranka L, Schjalm C, McAdam KE, Larsen CS, Heinzelbecker J, Gedde-Dahl T, Würzner R, Espevik T, Tjønnfjord GE, Garred P, Barratt-Due A, Tvedt THA, Mollnes TE. The function of the complement system remains fully intact throughout the course of allogeneic stem cell transplantation. Front Immunol 2024; 15:1422370. [PMID: 38938578 PMCID: PMC11208304 DOI: 10.3389/fimmu.2024.1422370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Hematopoietic stem cell transplantation (HSCT) is associated with immune complications and endothelial dysfunction due to intricate donor-recipient interactions, conditioning regimens, and inflammatory responses. Methods This study investigated the role of the complement system during HSCT and its interaction with the cytokine network. Seventeen acute myeloid leukemia patients undergoing HSCT were monitored, including blood sampling from the start of the conditioning regimen until four weeks post-transplant. Clinical follow-up was 200 days. Results Total complement functional activity was measured by WIELISA and the degree of complement activation by ELISA measurement of sC5b-9. Cytokine release was measured using a 27-multiplex immuno-assay. At all time-points during HSCT complement functional activity remained comparable to healthy controls. Complement activation was continuously stable except for two patients demonstrating increased activation, consistent with severe endotheliopathy and infections. In vitro experiments with post-HSCT whole blood challenged with Escherichia coli, revealed a hyperinflammatory cytokine response with increased TNF, IL-1β, IL-6 and IL-8 formation. Complement C3 inhibition markedly reduced the cytokine response induced by Staphylococcus aureus, Aspergillus fumigatus, and cholesterol crystals. Discussion In conclusion, HSCT patients generally retained a fully functional complement system, whereas activation occurred in patients with severe complications. The complement-cytokine interaction indicates the potential for new complement-targeting therapeutic strategies in HSCT.
Collapse
Affiliation(s)
- Beatrice Fageräng
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Leon Cyranka
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Karin Ekholt McAdam
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Julia Heinzelbecker
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tobias Gedde-Dahl
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Terje Espevik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Erland Tjønnfjord
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter Garred
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Andreas Barratt-Due
- Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | | | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| |
Collapse
|
6
|
Sawyer J, Elliott T, Orton L, Sowell H, Gatwood K, Shultes K. Prevention and management of acute toxicities from conditioning regimens during hematopoietic stem cell transplantation. Clin Hematol Int 2024; 6:1-10. [PMID: 38817311 PMCID: PMC11087001 DOI: 10.46989/001c.94952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 06/01/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains the only curative option for several hematological malignancies. Its use has continued to grow, with an estimated 23,500 transplants performed annually in the United States alone. The acute toxicities that occur from conditioning chemotherapy can impact the peri-transplant period and have substantial implications on patients' tolerability and outcomes, irrespective of the treatment of their disease. Chemotherapy-induced nausea vomiting (CINV), mucositis, transplant-associated thrombotic microangiopathy (TA-TMA), and sinusoidal obstruction syndrome, also known as a veno-occlusive disease (SOS/VOD) can all have significant implications for patients. These acute complications begin with the start of conditioning chemotherapy and add to potential toxicity for patients throughout the early post-transplant period, from Day +30 for CINV, mucositis, and SOS, and which can continue through at least Day +100 with the onset of TA-TMA. These toxicities must be prevented and managed appropriately. This review will summarize the literature surrounding them and guide their management.
Collapse
Affiliation(s)
- Jana Sawyer
- PharmacyVA Tennessee Valley Healthcare System
| | | | | | | | | | | |
Collapse
|
7
|
Gavriilaki E, Bousiou Z, Batsis I, Vardi A, Mallouri D, Koravou EE, Konstantinidou G, Spyridis N, Karavalakis G, Noli F, Patriarcheas V, Masmanidou M, Touloumenidou T, Papalexandri A, Poziopoulos C, Yannaki E, Sakellari I, Politou M, Papassotiriou I. Soluble Urokinase-Type Plasminogen Activator Receptor (suPAR) and Growth Differentiation Factor-15 (GDF-15) Levels Are Significantly Associated with Endothelial Injury Indices in Adult Allogeneic Hematopoietic Cell Transplantation Recipients. Int J Mol Sci 2023; 25:231. [PMID: 38203404 PMCID: PMC10778584 DOI: 10.3390/ijms25010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) and graft-versus-host disease (GvHD) represent life-threatening syndromes after allogeneic hematopoietic stem cell transplantation (allo-HSCT). In both conditions, endothelial dysfunction is a common denominator, and development of relevant biomarkers is of high importance for both diagnosis and prognosis. Despite the fact that soluble urokinase plasminogen activator receptor (suPAR) and growth differentiation factor-15 (GDF-15) have been determined as endothelial injury indices in various clinical settings, their role in HSCT-related complications remains unexplored. In this context, we used immunoenzymatic methods to measure suPAR and GDF-15 levels in HSCT-TMA, acute and/or chronic GVHD, control HSCT recipients, and apparently healthy individuals of similar age and gender. We found considerably greater SuPAR and GDF-15 levels in HSCT-TMA and GVHD patients compared to allo-HSCT and healthy patients. Both GDF-15 and suPAR concentrations were linked to EASIX at day 100 and last follow-up. SuPAR was associated with creatinine and platelets at day 100 and last follow-up, while GDF-15 was associated only with platelets, suggesting that laboratory values do not drive EASIX. SuPAR, but not GDF-15, was related to soluble C5b-9 levels, a sign of increased HSCT-TMA risk. Our study shows for the first time that suPAR and GDF-15 indicate endothelial damage in allo-HSCT recipients. Rigorous validation of these biomarkers in many cohorts may provide utility for their usefulness in identifying and stratifying allo-HSCT recipients with endothelial cell impairment.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Zoi Bousiou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Ioannis Batsis
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Anna Vardi
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Despina Mallouri
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Evaggelia-Evdoxia Koravou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Georgia Konstantinidou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Nikolaos Spyridis
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Georgios Karavalakis
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Foteini Noli
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Vasileios Patriarcheas
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Marianna Masmanidou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Tasoula Touloumenidou
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Apostolia Papalexandri
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Christos Poziopoulos
- Department of Hematology, Metropolitan Hospital, Neo Faliro, 18547 Athens, Greece;
| | - Evangelia Yannaki
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Ioanna Sakellari
- BMT Unit, Hematology Department, George Papanicolaou General Hospital, 57010 Thessaloniki, Greece; (Z.B.); (I.B.); (A.V.); (D.M.); (E.-E.K.); (G.K.); (N.S.); (G.K.); (F.N.); (V.P.); (M.M.); (T.T.); (A.P.); (E.Y.); (I.S.)
| | - Marianna Politou
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioannis Papassotiriou
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|