1
|
Catenacci L, Rossi R, Sechi F, Buonocore D, Sorrenti M, Perteghella S, Peviani M, Bonferoni MC. Effect of Lipid Nanoparticle Physico-Chemical Properties and Composition on Their Interaction with the Immune System. Pharmaceutics 2024; 16:1521. [PMID: 39771501 PMCID: PMC11728546 DOI: 10.3390/pharmaceutics16121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025] Open
Abstract
Lipid nanoparticles (LNPs) have shown promise as a delivery system for nucleic acid-based therapeutics, including DNA, siRNA, and mRNA vaccines. The immune system plays a critical role in the response to these nanocarriers, with innate immune cells initiating an early response and adaptive immune cells mediating a more specific reaction, sometimes leading to potential adverse effects. Recent studies have shown that the innate immune response to LNPs is mediated by Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs), which recognize the lipid components of the nanoparticles. This recognition can trigger the activation of inflammatory pathways and the production of cytokines and chemokines, leading to potential adverse effects such as fever, inflammation, and pain at the injection site. On the other hand, the adaptive immune response to LNPs appears to be primarily directed against the protein encoded by the mRNA cargo, with little evidence of an ongoing adaptive immune response to the components of the LNP itself. Understanding the relationship between LNPs and the immune system is critical for the development of safe and effective nucleic acid-based delivery systems. In fact, targeting the immune system is essential to develop effective vaccines, as well as therapies against cancer or infections. There is a lack of research in the literature that has systematically studied the factors that influence the interaction between LNPs and the immune system and further research is needed to better elucidate the mechanisms underlying the immune response to LNPs. In this review, we discuss LNPs' composition, physico-chemical properties, such as size, shape, and surface charge, and the protein corona formation which can affect the reactivity of the immune system, thus providing a guide for the research on new formulations that could gain a favorable efficacy/safety profile.
Collapse
Affiliation(s)
- Laura Catenacci
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Rachele Rossi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Francesca Sechi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Daniela Buonocore
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| | - Marco Peviani
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.R.); (F.S.); (M.S.); (M.C.B.)
| |
Collapse
|
2
|
Moretti E, Bonechi C, Signorini C, Corsaro R, Micheli L, Liguori L, Centini G, Collodel G. In Vitro Effects of Charged and Zwitterionic Liposomes on Human Spermatozoa and Supplementation with Liposomes and Chlorogenic Acid during Sperm Freezing. Cells 2024; 13:542. [PMID: 38534386 PMCID: PMC10968722 DOI: 10.3390/cells13060542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Semen handling and cryopreservation induce oxidative stress that should be minimized. In this study, human semen was supplemented during cryopreservation with formulations of handmade liposomes and chlorogenic acid (CGA), an antioxidant compound. Zwitterionic (ZL), anionic (AL), and cationic (CL) liposomes were synthesized and characterized. Three aliquots of swim-up-selected sperm were incubated with ZL, AL, and CL (1:10,000), respectively. The percentages of sperm with progressive motility, high mitochondrial membrane potential (MMP; JC-1), double-stranded DNA (dsDNA acridine orange), and acrosome integrity (Pisum sativum agglutinin) were assessed. Then, human semen was frozen using both 1:10,000 ZL and CGA as follows: freezing medium/empty ZL (EL), freezing medium/empty ZL/CGA in the medium (CGA + EL), freezing medium/CGA loaded ZL (CGA), freezing medium (CTR). The same sperm endpoints were evaluated. ZL were the most tolerated and used for semen cryopreservation protocols. All the supplemented samples showed better endpoints versus CTR (p < 0.001). In particular, spermatozoa from the CGA and CGA + EL A samples showed increased motility, dsDNA, and acrosome integrity versus CTR and EL (p < 0.001; motility EL vs. CGA + EL p < 0.05). ZL and CGA can improve post-thaw sperm quality, acting on both cold shock effect management and oxidative stress. These findings open new perspectives on human and animal reproduction.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (R.C.); (L.L.); (G.C.); (G.C.)
| | - Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (R.C.); (L.L.); (G.C.); (G.C.)
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (R.C.); (L.L.); (G.C.); (G.C.)
| | - Lucia Micheli
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| | - Laura Liguori
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (R.C.); (L.L.); (G.C.); (G.C.)
| | - Gabriele Centini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (R.C.); (L.L.); (G.C.); (G.C.)
- Obstetrics and Gynecological Clinic, University of Siena, 53100 Siena, Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.S.); (R.C.); (L.L.); (G.C.); (G.C.)
| |
Collapse
|
3
|
Bonechi C, Mahdizadeh FF, Talarico L, Pepi S, Tamasi G, Leone G, Consumi M, Donati A, Magnani A. Liposomal Encapsulation of Citicoline for Ocular Drug Delivery. Int J Mol Sci 2023; 24:16864. [PMID: 38069187 PMCID: PMC10706088 DOI: 10.3390/ijms242316864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Glaucoma represents a group of neurodegenerative diseases characterized by optic nerve damage and the slowly progressive death of retinal ganglion cells. Glaucoma is considered the second leading cause of irreversible blindness worldwide. Pharmaceutical treatment of glaucoma is critical because of the properties of the ocular barrier that limit the penetration of drugs, resulting in lower systemic bioavailability. This behavior causes the need of frequent drug administration, which leads to deposition of concentrated solutions on the eye, causing toxic effects and cellular damage to the eye. To overcome these drawbacks, novel drug-delivery systems, such as liposomes, can play an important role in improving the therapeutic efficacy of antiglaucomatous drugs. In this work, liposomes were synthesized to improve various aspects, such as ocular barrier penetration, bioavailability, sustained release of the drug, targeting of the tissue, and reduction in intraocular pressure. Citicoline (CDP-choline; cytidine 5'-diphosphocholine) is an important intermediate in the biosynthesis of cell membrane phospholipids, with neuroprotective and neuroenhancement properties, and it was used in the treatment on retinal function and neural conduction in the visual pathways of glaucoma patients. In this study, citicoline was loaded into the 1,2-dioleoyl-sn-glycerol-3-phosphocholine and cholesterol liposomal carrier to enhance its therapeutic effect. The citicoline encapsulation efficiency, drug release, and size analysis of the different liposome systems were investigated using dynamic light scattering, nuclear magnetic resonance, infrared spectroscopy, and ToF-SIMS experiments.
Collapse
Affiliation(s)
- Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Fariba Fahmideh Mahdizadeh
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
| | - Luigi Talarico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Simone Pepi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Alessandro Donati
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (C.B.); (F.F.M.); (L.T.); (S.P.); (G.T.); (G.L.); (M.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|