1
|
Huang L, Sun Y, Luo C, Wang W, Shi S, Sun G, Ju P, Chen J. Characterizing defective lipid metabolism in the lateral septum of mice treated with olanzapine: implications for its side effects. Front Pharmacol 2024; 15:1419098. [PMID: 38948475 PMCID: PMC11211371 DOI: 10.3389/fphar.2024.1419098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Schizophrenia significantly impacts cognitive and behavioral functions and is primarily treated with second-generation antipsychotics (SGAs) such as olanzapine. Despite their efficacy, these drugs are linked to serious metabolic side effects which can diminish patient compliance, worsen psychiatric symptoms and increase cardiovascular disease risk. This study explores the hypothesis that SGAs affect the molecular determinants of synaptic plasticity and brain activity, particularly focusing on the lateral septum (LS) and its interactions within hypothalamic circuits that regulate feeding and energy expenditure. Utilizing functional ultrasound imaging, RNA sequencing, and weighted gene co-expression network analysis, we identified significant alterations in the functional connection between the hypothalamus and LS, along with changes in gene expression in the LS of mice following prolonged olanzapine exposure. Our analysis revealed a module closely linked to increases in body weight and adiposity, featuring genes primarily involved in lipid metabolism pathways, notably Apoa1, Apoc3, and Apoh. These findings suggest that olanzapine may influence body weight and adiposity through its impact on lipid metabolism-related genes in the LS. Therefore, the neural circuits connecting the LS and LH, along with the accompanying alterations in lipid metabolism, are likely crucial factors contributing to the weight gain and metabolic side effects associated with olanzapine treatment.
Collapse
Affiliation(s)
- Lixuan Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Chao Luo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Si Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genmin Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| | - Jianhua Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Boutanquoi PM, Khan AS, Cabeza L, Jantzen L, Gautier T, Yesylevskyy S, Ramseyer C, Masson D, Van Waes V, Hichami A, Khan NA. A novel fatty acid analogue triggers CD36-GPR120 interaction and exerts anti-inflammatory action in endotoxemia. Cell Mol Life Sci 2024; 81:176. [PMID: 38598021 PMCID: PMC11006773 DOI: 10.1007/s00018-024-05207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Inflammation is a mediator of a number of chronic pathologies. We synthesized the diethyl (9Z,12Z)-octadeca-9,12-dien-1-ylphosphonate, called NKS3, which decreased lipopolysaccharide (LPS)-induced mRNA upregulation of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) not only in primary intraperitoneal and lung alveolar macrophages, but also in freshly isolated mice lung slices. The in-silico studies suggested that NKS3, being CD36 agonist, will bind to GPR120. Co-immunoprecipitation and proximity ligation assays demonstrated that NKS3 induced protein-protein interaction of CD36 with GPR120in RAW 264.7 macrophage cell line. Furthermore, NKS3, via GPR120, decreased LPS-induced activation of TAB1/TAK1/JNK pathway and the LPS-induced mRNA expression of inflammatory markers in RAW 264.7 cells. In the acute lung injury model, NKS3 decreased lung fibrosis and inflammatory cytokines (IL-1β, IL-6 and TNF-α) and nitric oxide (NO) production in broncho-alveolar lavage fluid. NKS3 exerted a protective effect on LPS-induced remodeling of kidney and liver, and reduced circulating IL-1β, IL-6 and TNF-α concentrations. In a septic shock model, NKS3 gavage decreased significantly the LPS-induced mortality in mice. In the last, NKS3 decreased neuroinflammation in diet-induced obese mice. Altogether, these results suggest that NKS3 is a novel anti-inflammatory agent that could be used, in the future, for the treatment of inflammation-associated pathologies.
Collapse
Affiliation(s)
- Pierre-Marie Boutanquoi
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne/Agro-Sup, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Amira Sayed Khan
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne/Agro-Sup, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Lidia Cabeza
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive-UR LINC, UFC, Besançon, France
| | - Lucas Jantzen
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive-UR LINC, UFC, Besançon, France
| | - Thomas Gautier
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
- LIPNESS, UMR U1231 INSERM/UB/Agro-Sup, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Semen Yesylevskyy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10, Prague 6, Czech Republic
- Laboratoire Chrono Environnement UMR CNRS6249, Université de Bourgogne Franche-Comté (UBFC), 16 route de Gray, 25030, Besançon, Cedex, France
- Receptor.AI Inc., 20-22 Wenlock Road, London, N1 7GU, UK
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, Kiev, 03028, Ukraine
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS6249, Université de Bourgogne Franche-Comté (UBFC), 16 route de Gray, 25030, Besançon, Cedex, France
| | - David Masson
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
- LIPNESS, UMR U1231 INSERM/UB/Agro-Sup, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Vincent Van Waes
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive-UR LINC, UFC, Besançon, France
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne/Agro-Sup, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, UMR U1231 INSERM/Université de Bourgogne/Agro-Sup, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France.
- FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.
| |
Collapse
|
3
|
Jantzen L, Dumontoy S, Ramadan B, Houdayer C, Haffen E, Hichami A, Khan NA, Van Waes V, Cabeza L. Dietary linoleic acid supplementation protects against obesity-induced microglial reactivity in mice. Sci Rep 2024; 14:6644. [PMID: 38503857 PMCID: PMC10951280 DOI: 10.1038/s41598-024-56959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
We investigated whether linoleic acid (LA) supplementation could modulate emotional behavior and microglia-related neuroinflammation. For that, male mice of C57BL/6J genetic background fed either a high-fat diet (HFD) or a standard diet (STD) for 12 weeks, were treated with a vehicle or LA solution for 5 weeks before being evaluated for emotional behavior using a battery of behavioral tests. The animals were subsequently sacrificed and their brains collected and processed for immunofluorescence staining, targeting microglia-specific calcium-binding proteins (IBA-1). Neuroinflammation severity was assessed in multiple hypothalamic, cortical and subcortical brain regions. We show an anxio-depressive-like effect of sustained HFD feeding that was neither alleviated nor worsened with LA supplementation. However, increased IBA-1 expression and microgliosis in the HFD group were largely attenuated by LA supplementation. These observations demonstrate that the anti-neuroinflammatory properties of LA are not restricted to hypothalamic areas but are also evident at the cortical and subcortical levels. This study discloses that neuroinflammation plays a role in the genesis of neuropsychiatric disorders in the context of obesity, and that LA supplementation is a useful dietary strategy to alleviate the impact of obesity-related neuroinflammation.
Collapse
Affiliation(s)
- Lucas Jantzen
- Université de Franche-Comté, UMR INSERM 1322 LINC, 19, Rue Ambroise Paré, 25000, Besançon Cedex, France
| | - Stéphanie Dumontoy
- Université de Franche-Comté, UMR INSERM 1322 LINC, 19, Rue Ambroise Paré, 25000, Besançon Cedex, France
| | - Bahrie Ramadan
- Université de Franche-Comté, UMR INSERM 1322 LINC, 19, Rue Ambroise Paré, 25000, Besançon Cedex, France
| | - Christophe Houdayer
- Université de Franche-Comté, UMR INSERM 1322 LINC, 19, Rue Ambroise Paré, 25000, Besançon Cedex, France
| | - Emmanuel Haffen
- Université de Franche-Comté, UMR INSERM 1322 LINC, service de psychiatrie de l'adulte, CIC-1431 INSERM, CHU de Besançon, 25030, Besançon, France
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie (NUTox), UMR UB/Institut Agro/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne, Dijon, France
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie (NUTox), UMR UB/Institut Agro/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne, Dijon, France
| | - Vincent Van Waes
- Université de Franche-Comté, UMR INSERM 1322 LINC, 19, Rue Ambroise Paré, 25000, Besançon Cedex, France
| | - Lidia Cabeza
- Université de Franche-Comté, UMR INSERM 1322 LINC, 19, Rue Ambroise Paré, 25000, Besançon Cedex, France.
| |
Collapse
|
4
|
Sanchez C, Colson C, Gautier N, Noser P, Salvi J, Villet M, Fleuriot L, Peltier C, Schlich P, Brau F, Sharif A, Altintas A, Amri EZ, Nahon JL, Blondeau N, Benani A, Barrès R, Rovère C. Dietary fatty acid composition drives neuroinflammation and impaired behavior in obesity. Brain Behav Immun 2024; 117:330-346. [PMID: 38309640 DOI: 10.1016/j.bbi.2024.01.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024] Open
Abstract
Nutrient composition in obesogenic diets may influence the severity of disorders associated with obesity such as insulin-resistance and chronic inflammation. Here we hypothesized that obesogenic diets rich in fat and varying in fatty acid composition, particularly in omega 6 (ω6) to omega 3 (ω3) ratio, have various effects on energy metabolism, neuroinflammation and behavior. Mice were fed either a control diet or a high fat diet (HFD) containing either low (LO), medium (ME) or high (HI) ω6/ω3 ratio. Mice from the HFD-LO group consumed less calories and exhibited less body weight gain compared to other HFD groups. Both HFD-ME and HFD-HI impaired glucose metabolism while HFD-LO partly prevented insulin intolerance and was associated with normal leptin levels despite higher subcutaneous and perigonadal adiposity. Only HFD-HI increased anxiety and impaired spatial memory, together with increased inflammation in the hypothalamus and hippocampus. Our results show that impaired glucose metabolism and neuroinflammation are uncoupled, and support that diets with a high ω6/ω3 ratio are associated with neuroinflammation and the behavioral deterioration coupled with the consumption of diets rich in fat.
Collapse
Affiliation(s)
- Clara Sanchez
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France
| | - Cécilia Colson
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France; Université Côte d'Azur, Institut de Biologie de Valrose, CNRS, INSERM, France
| | - Nadine Gautier
- Université Côte d'Azur, Institut de Biologie de Valrose, CNRS, INSERM, France
| | - Pascal Noser
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Juliette Salvi
- Université Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, France
| | - Maxime Villet
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France
| | - Lucile Fleuriot
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France
| | - Caroline Peltier
- Université Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, France
| | - Pascal Schlich
- Université Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, France
| | - Frédéric Brau
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France
| | - Ariane Sharif
- Université de Lille, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neurosciences & Cognition, UMR-S 1172, Lille France
| | - Ali Altintas
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Ez-Zoubir Amri
- Université Côte d'Azur, Institut de Biologie de Valrose, CNRS, INSERM, France
| | - Jean-Louis Nahon
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France
| | - Nicolas Blondeau
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France
| | - Alexandre Benani
- Université Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, France
| | - Romain Barrès
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Carole Rovère
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, France.
| |
Collapse
|
5
|
You J, Youssef MMM, Santos JR, Lee J, Park J. Microglia and Astrocytes in Amyotrophic Lateral Sclerosis: Disease-Associated States, Pathological Roles, and Therapeutic Potential. BIOLOGY 2023; 12:1307. [PMID: 37887017 PMCID: PMC10603852 DOI: 10.3390/biology12101307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Microglial and astrocytic reactivity is a prominent feature of amyotrophic lateral sclerosis (ALS). Microglia and astrocytes have been increasingly appreciated to play pivotal roles in disease pathogenesis. These cells can adopt distinct states characterized by a specific molecular profile or function depending on the different contexts of development, health, aging, and disease. Accumulating evidence from ALS rodent and cell models has demonstrated neuroprotective and neurotoxic functions from microglia and astrocytes. In this review, we focused on the recent advancements of knowledge in microglial and astrocytic states and nomenclature, the landmark discoveries demonstrating a clear contribution of microglia and astrocytes to ALS pathogenesis, and novel therapeutic candidates leveraging these cells that are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Mohieldin M. M. Youssef
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
| | - Jhune Rizsan Santos
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jooyun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (J.Y.); (M.M.M.Y.); (J.R.S.); (J.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
6
|
Ullah R, Shen Y, Zhou YD, Fu J. Perinatal metabolic inflammation in the hypothalamus impairs the development of homeostatic feeding circuitry. Metabolism 2023; 147:155677. [PMID: 37543245 DOI: 10.1016/j.metabol.2023.155677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Over the past few decades, there has been a global increase in childhood obesity. This rise in childhood obesity contributes to the susceptibility of impaired metabolism during both childhood and adulthood. The hypothalamus, specifically the arcuate nucleus (ARC), houses crucial neurons involved in regulating homeostatic feeding. These neurons include proopiomelanocortin (POMC) and agouti-related peptide (AGRP) secreting neurons. They play a vital role in sensing nutrients and metabolic hormones like insulin, leptin, and ghrelin. The neurogenesis of AGRP and POMC neurons completes at birth; however, axon development and synapse formation occur during the postnatal stages in rodents. Insulin, leptin, and ghrelin are the essential regulators of POMC and AGRP neurons. Maternal obesity and postnatal overfeeding or a high-fat diet (HFD) feeding cause metabolic inflammation, disrupted signaling of metabolic hormones, netrin-1, and neurogenic factors, neonatal obesity, and defective neuronal development in animal models; however, the mechanism is unclear. Within the hypothalamus and other brain areas, there exists a wide range of interconnected neuronal populations that regulate various aspects of feeding. However, this review aims to discuss how perinatal metabolic inflammation influences the development of POMC and AGRP neurons within the hypothalamus.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China.
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China.
| |
Collapse
|
7
|
Díaz-Camargo E, Hernández-Lalinde J, Sánchez-Rubio M, Chaparro-Suárez Y, Álvarez-Caicedo L, Fierro-Zarate A, Gravini-Donado M, García-Pacheco H, Rojas-Quintero J, Bermúdez V. NHANES 2011-2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5257. [PMID: 37047872 PMCID: PMC10093810 DOI: 10.3390/ijerph20075257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
A relationship between metabolic syndrome and cognitive impairment has been evidenced across research; however, conflicting results have been observed. A cross-sectional study was conducted on 3179 adults older than 60 from the 2011-2014 National Health and Nutrition Examination Survey (NHANES) to analyze the relationship between metabolic syndrome and cognitive impairment. In our results, we found that adults with abdominal obesity, high triglycerides, and low HDL cholesterol had 4.39 fewer points in the CERAD immediate recall test than adults without any metabolic syndrome factors [Beta = -4.39, SE = 1.32, 17.75 (1.36) vs. 22.14 (0.76)]. In addition, people with this metabolic syndrome combination exhibited 2.39 fewer points in the CERAD delayed recall test than those without metabolic syndrome criteria [Beta = -2.39, SE = 0.46, 4.32 (0.49) vs. 6.71 (0.30)]. It was also found that persons with high blood pressure, hyperglycemia, and low HDL-cholesterol levels reached 4.11 points less in the animal fluency test than people with no factors [Beta = -4.11, SE = 1.55, 12.67 (2.12) vs. 16.79 (1.35)]. These findings suggest that specific metabolic syndrome combinations are essential predictors of cognitive impairment. In this study, metabolic syndrome combinations that included obesity, fasting hyperglycemia, high triglycerides, and low HDL-cholesterol were among the most frequent criteria observed.
Collapse
Affiliation(s)
- Edgar Díaz-Camargo
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia
| | - Juan Hernández-Lalinde
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Cúcuta 540006, Colombia
| | - María Sánchez-Rubio
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia
| | - Yudy Chaparro-Suárez
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia
| | - Liseth Álvarez-Caicedo
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia
| | - Alexandra Fierro-Zarate
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540006, Colombia
| | - Marbel Gravini-Donado
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080001, Colombia
| | - Henry García-Pacheco
- Facultad de Medicina, Departamento de Cirugía, Universidad del Zulia, Hospital General del Sur, Dr. Pedro Iturbe, Maracaibo 4004, Venezuela
- Unidad de Cirugía para Obesidad y Metabolismo (UCOM), Maracaibo 4004, Venezuela
| | - Joselyn Rojas-Quintero
- Medicine, Pulmonary, Critical Care, and Sleep Medicine Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080001, Colombia
| |
Collapse
|