1
|
Ma J, Pan Y, Huang W, Fan Z, Liu S, Huang Y, Yao S, Hao C, Jiang Q, Li T. Overexpression of tae-miR9670 enhances cadmium tolerance in wheat by targeting mTERFs without yield penalty. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136448. [PMID: 39522224 DOI: 10.1016/j.jhazmat.2024.136448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd) is a widely distributed heavy metal that poses significant hazards to both crop productivity and human health. MicroRNAs (miRNAs) play pivotal roles in plant growth, development and responses to environmental stresses, yet little is known about their roles in regulating Cd tolerance in wheat. In this study, we identified tae-miR9670, a Triticeae-specific miRNA, as responsive to Cd exposure in wheat through miRNAome analysis. Tae-miR9670 can target genes that encode mitochondrial transcription termination factors (mTERFs), mediating their mRNA cleavage and suppressing their expression. Overexpression of tae-miR9670 significantly enhanced Cd tolerance in wheat seedlings, as demonstrated by increased biomass and reduced levels of malondialdehyde (MDA), H2O2, and Cd content. Consequently, multiple downstream genes involved in ROS scavenging, detoxification and heavy metal transport were upregulated in tae-miR9670 overexpression plants. Moreover, the grain Cd content in mature plants overexpressing tae-miR9670 was reduced by over 60 % compared to wild-type controls. Our results also indicated that overexpressing tae-miR9670 in wheat preserved yield-related traits, thereby overcoming the trade-off between stress resistance and grain yield. Overall, our findings provide new insights into the role of tae-miR9670 in Cd tolerance in wheat and its potential application in breeding low-Cd cultivars.
Collapse
Affiliation(s)
- Jianhui Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yuxue Pan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weihua Huang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhiyao Fan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Shujuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yilin Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shixiang Yao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qiyan Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Charagh S, Wang H, Wang J, Raza A, Hui S, Cao R, Zhou L, Tang S, Hu P, Hu S. Leveraging multi-omics tools to comprehend responses and tolerance mechanisms of heavy metals in crop plants. Funct Integr Genomics 2024; 24:194. [PMID: 39441418 DOI: 10.1007/s10142-024-01481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Extreme anthropogenic activities and current farming techniques exacerbate the effects of water and soil impurity by hazardous heavy metals (HMs), severely reducing agricultural output and threatening food safety. In the upcoming years, plants that undergo exposure to HM might cause a considerable decline in the development as well as production. Hence, plants have developed sophisticated defensive systems to evade or withstand the harmful consequences of HM. These mechanisms comprise the uptake as well as storage of HMs in organelles, their immobilization via chemical formation by organic chelates, and their removal using many ion channels, transporters, signaling networks, and TFs, amid other approaches. Among various cutting-edge methodologies, omics, most notably genomics, transcriptomics, proteomics, metabolomics, miRNAomics, phenomics, and epigenomics have become game-changing approaches, revealing information about the genes, proteins, critical metabolites as well as microRNAs that govern HM responses and resistance systems. With the help of integrated omics approaches, we will be able to fully understand the molecular processes behind plant defense, enabling the development of more effective crop protection techniques in the face of climate change. Therefore, this review comprehensively presented omics advancements that will allow resilient and sustainable crop plants to flourish in areas contaminated with HMs.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Auverlot J, Dard A, Sáez-Vásquez J, Reichheld JP. Redox regulation of epigenetic and epitranscriptomic gene regulatory pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4459-4475. [PMID: 38642408 DOI: 10.1093/jxb/erae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Developmental and environmental constraints influence genome expression through complex networks of regulatory mechanisms. Epigenetic modifications and remodelling of chromatin are some of the major actors regulating the dynamic of gene expression. Unravelling the factors relaying environmental signals that induce gene expression reprogramming under stress conditions is an important and fundamental question. Indeed, many enzymes involved in epigenetic and chromatin modifications are regulated by redox pathways, through post-translational modifications of proteins or by modifications of the flux of metabolic intermediates. Such modifications are potential hubs to relay developmental and environmental changes for gene expression reprogramming. In this review, we provide an update on the interaction between major redox mediators, such as reactive oxygen and nitrogen species and antioxidants, and epigenetic changes in plants. We detail how redox status alters post-translational modifications of proteins, intracellular epigenetic and epitranscriptional modifications, and how redox regulation interplays with DNA methylation, histone acetylation and methylation, miRNA biogenesis, and chromatin structure and remodelling to reprogram genome expression under environmental constraints.
Collapse
Affiliation(s)
- Juline Auverlot
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
- Centre for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
4
|
Song L, Zhou J, Xu X, Na M, Xu S, Huang Y, Zhang J, Li X, Zheng X. Inoculation of cadmium-tolerant bacteria to regulate microbial activity and key bacterial population in cadmium-contaminated soils during bioremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115957. [PMID: 38219617 DOI: 10.1016/j.ecoenv.2024.115957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The perennial ryegrass Lolium perenne can be used in conjunction with cadmium (Cd)-tolerant bacteria such as Cdq4-2 (Enterococcus spp.) for bioremediation of Cd-contaminated soil. In this study, a theoretical basis was provided to increase the efficiency of L. perenne remediation of Cd-contaminated soil using microorganisms to maintain the stability of the soil microbiome. The experimental design involved three treatment groups: CK (soil without Cd addition) as the control, 20 mg·kg-1 Cd-contaminated soil, and 20 mg·kg-1 Cd-contaminated soil + Cdq4-2, all planted with L. perenne. The soil was collected on day 60 to determine the soil microbial activity and bacterial community structure and to analyze the correlation between soil variables, the bacterial community, available Cd content in the soil, Cd accumulation, and L. perenne growth. The soil microbial activity and bacterial community diversity decreased under Cd stress, and the soil microbial community composition was changed; while inoculation with Cdq4-2 significantly increased soil basal respiration and the activities of urease, invertase, and fluorescein diacetate (FDA) hydrolase by 83.65%, 79.72%, 19.88%, and 96.15% respectively; and the stability of the community structure was also enhanced. The Actinobacteriota biomass, the amount of available Cd, and the above- and belowground Cd content of L. perenne were significantly negatively correlated with the total phosphorus, total potassium, and pH. The activity of urease, invertase, and FDA hydrolase were significantly positively correlated with the biomasses of Acidobacteriota and L. perenne and significantly negatively correlated with the Chloroflexi biomass. Further, the available soil Cd content and the above- and belowground Cd levels of L. perenne were significantly positively correlated with the Actinobacteriota biomass and significantly negatively correlated with the Gemmatimonadetes biomass. Overall, inoculating Cd-tolerant bacteria improved the microbial activity, diversity, and abundance, and changed the microbial community composition, facilitating the remediation of Cd-contaminated soil by L. perenne.
Collapse
Affiliation(s)
- Lanping Song
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaoyang Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Meng Na
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Shangqi Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yongjie Huang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jie Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaoping Li
- Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xianqing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
5
|
He S, Niu Y, Xing L, Liang Z, Song X, Ding M, Huang W. Research progress of the detection and analysis methods of heavy metals in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1310328. [PMID: 38362447 PMCID: PMC10867983 DOI: 10.3389/fpls.2024.1310328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Heavy metal (HM)-induced stress can lead to the enrichment of HMs in plants thereby threatening people's lives and health via the food chain. For this reason, there is an urgent need for some reliable and practical techniques to detect and analyze the absorption, distribution, accumulation, chemical form, and transport of HMs in plants for reducing or regulating HM content. Not only does it help to explore the mechanism of plant HM response, but it also holds significant importance for cultivating plants with low levels of HMs. Even though this field has garnered significant attention recently, only minority researchers have systematically summarized the different methods of analysis. This paper outlines the detection and analysis techniques applied in recent years for determining HM concentration in plants, such as inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray absorption spectroscopy (XAS), X-ray fluorescence spectrometry (XRF), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), non-invasive micro-test technology (NMT) and omics and molecular biology approaches. They can detect the chemical forms, spatial distribution, uptake and transport of HMs in plants. For this paper, the principles behind these techniques are clarified, their advantages and disadvantages are highlighted, their applications are explored, and guidance for selecting the appropriate methods to study HMs in plants is provided for later research. It is also expected to promote the innovation and development of HM-detection technologies and offer ideas for future research concerning HM accumulation in plants.
Collapse
Affiliation(s)
- Shuang He
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuting Niu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lu Xing
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaomei Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of “Taibaiqiyao” Research and Applications, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Meihai Ding
- Management Department, Xi’an Ande Pharmaceutical Co; Ltd., Xi’an, China
| | - Wenli Huang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Key Laboratory of “Taibaiqiyao” Research and Applications, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
6
|
Ding T, Li W, Li F, Ren M, Wang W. microRNAs: Key Regulators in Plant Responses to Abiotic and Biotic Stresses via Endogenous and Cross-Kingdom Mechanisms. Int J Mol Sci 2024; 25:1154. [PMID: 38256227 PMCID: PMC10816238 DOI: 10.3390/ijms25021154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dramatic shifts in global climate have intensified abiotic and biotic stress faced by plants. Plant microRNAs (miRNAs)-20-24 nucleotide non-coding RNA molecules-form a key regulatory system of plant gene expression; playing crucial roles in plant growth; development; and defense against abiotic and biotic stress. Moreover, they participate in cross-kingdom communication. This communication encompasses interactions with other plants, microorganisms, and insect species, collectively exerting a profound influence on the agronomic traits of crops. This article comprehensively reviews the biosynthesis of plant miRNAs and explores their impact on plant growth, development, and stress resistance through endogenous, non-transboundary mechanisms. Furthermore, this review delves into the cross-kingdom regulatory effects of plant miRNAs on plants, microorganisms, and pests. It proceeds to specifically discuss the design and modification strategies for artificial miRNAs (amiRNAs), as well as the protection and transport of miRNAs by exosome-like nanovesicles (ELNVs), expanding the potential applications of plant miRNAs in crop breeding. Finally, the current limitations associated with harnessing plant miRNAs are addressed, and the utilization of synthetic biology is proposed to facilitate the heterologous expression and large-scale production of miRNAs. This novel approach suggests a plant-based solution to address future biosafety concerns in agriculture.
Collapse
Affiliation(s)
- Tianze Ding
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenkang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenjing Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
7
|
Yan G, Jin H, Yin C, Hua Y, Huang Q, Zhou G, Xu Y, He Y, Liang Y, Zhu Z. Comparative effects of silicon and silicon nanoparticles on the antioxidant system and cadmium uptake in tomato under cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166819. [PMID: 37673236 DOI: 10.1016/j.scitotenv.2023.166819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Cadmium (Cd) pollution is an important threat to agricultural production globally. Silicon (Si) and silicon nanoparticles (Si NPs) can mitigate Cd stress in plants. However, the mechanisms underlying the impacts of Si and Si NPs on Cd resistance, particularly in low-Si accumulators, remain inadequately understood. Accordingly, we conducted a comparative investigation into the roles of Si and Si NPs in regulating the antioxidant system (enzymes and antioxidants) and Cd uptake (influx rate, symplastic and apoplastic pathways) in tomato (a typical low-Si accumulator). The results revealed that Si and Si NPs improved tomato growth under Cd stress, and principal component analysis (PCA) demonstrated that Si NPs were more effective than Si. For oxidative damage, redundancy analysis (RDA) results showed that Si NPs ameliorated oxidative damage in both shoots and roots, whereas Si predominantly alleviated oxidative damage in roots. Simultaneously, Si and Si NPs regulated antioxidant enzymes and nonenzymatic antioxidants with distinct targets and strengths. Furthermore, Si and Si NPs decreased Cd concentration in tomato shoot, root, and xylem sap, while Si NPs induced a more significant decline in shoot and xylem sap Cd. Noninvasive microtest and quantitative estimation of trisodium-8-hydroxy-1,3,6-pyrenetrisulfonic (PTS, an apoplastic tracer) showed that Si and Si NPs reduced the Cd influx rate and apoplastic Cd uptake, while Si NPs induced a more significant reduction. Moreover, Si regulated the expression of genes responsible for Cd uptake (NRAMP2 and LCT1) and compartmentalization (HMA3), while Si NPs reduced the expression of NRAMP2. In conjunction with RDA, the results showed that Si and Si NPs decreased Cd uptake mainly by regulating the symplastic and apoplastic pathways, respectively. Overall, our results indicate that Si NPs is more effective in promoting tomato growth and alleviating oxidative damage than Si in tomato under Cd stress by modulating the antioxidant system and reducing apoplastic Cd uptake.
Collapse
Affiliation(s)
- Guochao Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Han Jin
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Chang Yin
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuchen Hua
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Qingying Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Guanfeng Zhou
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yunmin Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yong He
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
8
|
Ma Z, Hu L. MicroRNA: A Dynamic Player from Signalling to Abiotic Tolerance in Plants. Int J Mol Sci 2023; 24:11364. [PMID: 37511124 PMCID: PMC10379455 DOI: 10.3390/ijms241411364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules composed of approximately 20-24 nucleotides in plants. They play an important regulatory role in plant growth and development and as a signal in abiotic tolerance. Some abiotic stresses include drought, salt, cold, high temperature, heavy metals and nutritional elements. miRNAs affect gene expression by manipulating the cleavage, translational expression or DNA methylation of target messenger RNAs (mRNAs). This review describes the current progress in the field considering two aspects: (i) the way miRNAs are produced and regulated and (ii) the way miRNA/target genes are used in plant responses to various abiotic stresses. Studying the molecular mechanism of action of miRNAs' downstream target genes could optimize the genetic manipulation of crop growth and development conditions to provide a more theoretically optimized basis for improving crop production. MicroRNA is a novel signalling mechanism in interplant communication relating to abiotic tolerance.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|