1
|
Wang Y, Sun Y, Yang C, Han B, Wang S. Sodium salicylate ameliorates exercise-induced muscle damage in mice by inhibiting NF-kB signaling. J Orthop Surg Res 2023; 18:967. [PMID: 38098039 PMCID: PMC10722820 DOI: 10.1186/s13018-023-04433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Eccentric muscle contraction can cause muscle damage, which reduces the efficiency of exercise. Previous evidence suggested that Sodium salicylate (SS) could improve the repair of aged muscle. This study intends to investigate whether SS can impact skeletal muscle damage caused by eccentric exercise. METHODS Eccentric treadmill exercise was performed to induce muscle damage in mice. Plasma levels of muscle damage markers were estimated. RT-qPCR was employed for detecting mRNA levels of proinflammatory mediators in murine gastrocnemius muscle. Immunofluorescence staining of laminin/DAPI was utilized for quantifying centrally nucleated myofibers in the gastrocnemius muscle. Western blotting was implemented to examine protein levels of mitsugumin 53 (MG53), matrix metalloproteinase (MMP)-2/9, and NF-κB signaling-related markers. RESULTS SS administration reduced muscle damage marker production in the plasma and decreased the levels of proinflammatory mediators, MG53 and MMP-2/9 in mice after exercise. SS alleviated the severity of muscle damage in the gastrocnemius of mice after eccentric exercise. SS blocked NF-κB signaling pathway in the gastrocnemius muscle. CONCLUSION SS administration ameliorates skeletal muscle damage caused by eccentric exercise in the mouse model.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China.
| | - Yuning Sun
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China
| | - Chunhui Yang
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China
| | - Bing Han
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang City, 110819, China
| | - Sining Wang
- Department of General, Huanggu District People's Government Office, Shenyang City, 110032, China
| |
Collapse
|
2
|
Shamshoum H, Medak KD, McKie GL, Jeromson S, Hahn MK, Wright DC. Salsalate and/or metformin therapy confer beneficial metabolic effects in olanzapine treated female mice. Biomed Pharmacother 2023; 168:115671. [PMID: 37839107 DOI: 10.1016/j.biopha.2023.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
Antipsychotic medications are used in the management of schizophrenia and a growing number of off-label conditions. While effective at reducing psychoses, these drugs possess noted metabolic side effects including weight gain, liver lipid accumulation and disturbances in glucose and lipid metabolism. To counter the side effects of antipsychotics standard of care has typically included metformin. Unfortunately, metformin does not protect against antipsychotic induced metabolic disturbances in all patients and thus additional treatment approaches are needed. One potential candidate could be salsalate, the prodrug of salicylate, which acts synergistically with metformin to improve indices of glucose and lipid metabolism in obese mice. The purpose of the current investigation was to compare the effects of salsalate, metformin and a combination of both drugs, on weight gain and indices of metabolic health in female mice treated with the antipsychotic, olanzapine. Herein we demonstrate that salsalate was equally as effective as metformin in protecting against olanzapine induced weight gain and liver lipid accumulation with no additional benefit of combining both drugs. Conversely, metformin treatment, either alone or in combination with salsalate, improved indices of glucose metabolism and increased energy expenditure in olanzapine treated mice. Collectively, our findings provide evidence that dual therapy with both metformin and salsalate could be an efficacious approach with which to dampen the metabolic consequences of antipsychotic medications.
Collapse
Affiliation(s)
- Hesham Shamshoum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2 W1, Canada
| | - Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2 W1, Canada
| | - Greg L McKie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2 W1, Canada
| | - Stewart Jeromson
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; BC Children's Hospital Research Institute, 950 W. 28th Ave., Vancouver, British Columbia V5Z 4H4, Canada
| | - Margaret K Hahn
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David C Wright
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; BC Children's Hospital Research Institute, 950 W. 28th Ave., Vancouver, British Columbia V5Z 4H4, Canada; Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
3
|
Rashid R, Tripathi R, Singh A, Sarkar S, Kawale A, Bader GN, Gupta S, Gupta RK, Jha RK. Naringenin improves ovarian health by reducing the serum androgen and eliminating follicular cysts in letrozole-induced polycystic ovary syndrome in the Sprague Dawley rats. Phytother Res 2023; 37:4018-4041. [PMID: 37165686 DOI: 10.1002/ptr.7860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Polycystic ovary syndrome (PCOS) is most common in women of reproductive age, giving rise to androgen excess and anovulation, leading to infertility and non-reproductive complications. We explored the ameliorating effect of naringenin in PCOS using the Sprague Dawley (SD) rat model and human granulosa cells. Letrozole-induced PCOS rats were given either naringenin (50 mg/kg/day) alone or in combination with metformin (300 mg/kg/day), followed by the estrous cycle, hormonal analysis, and glucose sensitivity test. To evaluate the effect of naringenin on granulosa cell (hGC) steroidogenesis, we treated cells with naringenin (2.5 μM) alone or in combination with metformin (1 mM) in the presence of forskolin (10 μM). To determine the steroidogenesis of CYP-17A1, -19A1, and 3βHSD2, the protein expression levels were examined. Treatment with naringenin in the PCOS animal groups increased ovulation potential and decreased cystic follicles and levels of androgens. The expression levels of CYP-17A1, -19A1, and 3βHSD2, were seen restored in the ovary of PCOS SD rats' model and in the human ovarian cells in response to the naringenin. We found an increased expression level of phosphorylated-AKT in the ovary and hGCs by naringenin. Naringenin improves ovulation and suppress androgens and cystic follicles, involving AKT activation.
Collapse
Affiliation(s)
- Rumaisa Rashid
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Department of Pharmaceutical Sciences, University of Kashmir, Jammu and Kashmir, India
| | - Rupal Tripathi
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akanksha Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sudarsan Sarkar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajaykumar Kawale
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - G N Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Jammu and Kashmir, India
| | - Satish Gupta
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar Gupta
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajesh Kumar Jha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|