1
|
Žužek MC. Advances in Cholinesterase Inhibitor Research-An Overview of Preclinical Studies of Selected Organoruthenium(II) Complexes. Int J Mol Sci 2024; 25:9049. [PMID: 39201735 PMCID: PMC11354293 DOI: 10.3390/ijms25169049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Cholinesterase (ChE) inhibitors are crucial therapeutic agents for the symptomatic treatment of certain chronic neurodegenerative diseases linked to functional disorders of the cholinergic system. Significant research efforts have been made to develop novel derivatives of classical ChE inhibitors and ChE inhibitors with novel scaffolds. Over the past decade, ruthenium complexes have emerged as promising novel therapeutic alternatives for the treatment of neurodegenerative diseases. Our research group has investigated a number of newly synthesized organoruthenium(II) complexes for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Three complexes (C1a, C1-C, and C1) inhibit ChE in a pharmacologically relevant range. C1a reversibly inhibits AChE and BChE without undesirable peripheral effects, making it a promising candidate for the treatment of Alzheimer's disease. C1-Cl complex reversibly and competitively inhibits ChEs, particularly AChE. It inhibits nerve-evoked skeletal muscle twitch and tetanic contraction in a concentration-dependent manner with no effect on directly elicited twitch and tetanic contraction and is promising for further preclinical studies as a competitive neuromuscular blocking agent. C1 is a selective, competitive, and reversible inhibitor of BChE that inhibits horse serum BChE (hsBChE) without significant effect on the peripheral neuromuscular system and is a highly species-specific inhibitor of hsBChE that could serve as a species-specific drug target. This research contributes to the expanding knowledge of ChE inhibitors based on ruthenium complexes and highlights their potential as promising therapeutic candidates for chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Monika C Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Laghchioua F, da Silva CFM, Pinto DCGA, Cavaleiro JA, Mendes RF, Paz FAA, Faustino MAF, Rakib EM, Neves MGPMS, Pereira F, Moura NMM. Design of Promising Thiazoloindazole-Based Acetylcholinesterase Inhibitors Guided by Molecular Docking and Experimental Insights. ACS Chem Neurosci 2024; 15:2853-2869. [PMID: 39037949 PMCID: PMC11311138 DOI: 10.1021/acschemneuro.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive deterioration of cognitive function and memory loss, and it is closely associated with the dysregulation of cholinergic neurotransmission. Since acetylcholinesterase (AChE) is a critical enzyme in the nervous system, responsible for breaking down the neurotransmitter acetylcholine, its inhibition holds a significant interest in the treatment of various neurological disorders. Therefore, it is crucial to develop efficient AChE inhibitors capable of increasing acetylcholine levels, ultimately leading to improved cholinergic neurotransmission. The results reported here represent a step forward in the development of novel thiazoloindazole-based compounds that have the potential to serve as effective AChE inhibitors. Molecular docking studies revealed that certain of the evaluated nitroindazole-based compounds outperformed donepezil, a well-known AChE inhibitor used in Alzheimer's disease treatment. Sustained by these findings, two series of compounds were synthesized. One series included a triazole moiety (Tl45a-c), while the other incorporated a carbazole moiety (Tl58a-c). These compounds were isolated in yields ranging from 66 to 87% through nucleophilic substitution and Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reactions. Among the synthesized compounds, the thiazoloindazole-based 6b core derivatives emerged as selective AChE inhibitors, exhibiting remarkable IC50 values of less than 1.0 μM. Notably, derivative Tl45b displays superior performance as an AChE inhibitor, boasting the lowest IC50 (0.071 ± 0.014 μM). Structure-activity relationship (SAR) analysis indicated that derivatives containing the bis(trifluoromethyl)phenyl-triazolyl group demonstrated the most promising activity against AChE, when compared to more rigid substituents such as carbazolyl moiety. The combination of molecular docking and experimental synthesis provides a suitable and promising strategy for the development of new efficient thiazoloindazole-based AChE inhibitors.
Collapse
Affiliation(s)
- Fatima
Ezzahra Laghchioua
- Laboratory
of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences
and Technics, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
| | - Carlos F. M. da Silva
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A.
S. Cavaleiro
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F. Mendes
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A. Almeida Paz
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - El Mostapha Rakib
- Laboratory
of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences
and Technics, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
- Higher
School of Technology, Sultan Moulay Slimane
University, BP 336, Fkih Ben Salah, Morocco
| | | | - Florbela Pereira
- LAQV-REQUIMTE,
Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno M. M. Moura
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Alza NP, Pferschy-Wenzig EM, Kunert O, Murray AP. Withanolide Profile and Acetylcholinesterase Inhibitory Activity of Two Argentinean Jaborosa Species. PLANTA MEDICA 2024; 90:561-575. [PMID: 38843796 DOI: 10.1055/a-2255-7096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Acetylcholinesterase (AChE) inhibitors are still an important option for managing symptoms of mild to moderate Alzheimer's disease. In this study, we aimed to evaluate the potential in vitro AChE inhibitory activity of two Argentinian endemic Solanaceae species, Jaborosa bergii and J. runcinata. UHPLC-DAD-HRMS metabolite profiling revealed the presence of withanolides in the active CH2Cl2 subextracts. Their fractionation led to the isolation and identification of two known spiranoid withanolides from J. runcinata and three new withanolides with a skeleton similar to that of trechonolide-type withanolides from J. bergii. The known compounds showed moderate AChE inhibitory activity, while the new ones were inactive.
Collapse
Affiliation(s)
- Natalia P Alza
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Eva M Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Graz, Austria
| | - Olaf Kunert
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Ana P Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
4
|
Sadeghi M, Seyedebrahimi S, Ghanadian M, Miroliaei M. Identification of cholinesterases inhibitors from flavonoids derivatives for possible treatment of Alzheimer's disease: In silico and in vitro approaches. Curr Res Struct Biol 2024; 7:100146. [PMID: 38707547 PMCID: PMC11070244 DOI: 10.1016/j.crstbi.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Nowadays, one of the methods to prevent the progress of Alzheimer's disease (AD) is to prescribe compounds that inhibit the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Researchers are actively pursuing compounds, particularly of natural origin, that exhibit enhanced efficacy and reduced side effects. The inhibition of AChE and BChE using natural flavonoids represents a promising avenue for regulating AD. This study aims to identify alternative flavonoids capable of modulating AD by down-regulating AChE and BChE activity through a molecular docking approach. Molecular docking analysis identified Ginkgetin and Kolaflavanone as potent inhibitors of AChE and BChE, respectively, among the selected flavonoids. Asn87 and Ala127 involved in the interactions of AChE-Ginkgetin complex through conventional hydrogen bonds. While in the BChE-Kolaflavanone complex, Asn83, Ser79, Gln 47, and Ser287 are involved. In vitro analysis further corroborated the inhibitory potential, with Ginkgetin exhibiting an IC50 of 3.2 mM against AChE, and Kolaflavanone displaying an IC50 of 3.6 mM against BChE. These findings underscore the potential of Ginkgetin and Kolaflavanone as candidate inhibitors for the treatment of AD through the inhibition of AChE and BChE enzymes. Nevertheless, additional in vitro and in vivo studies are imperative to validate the efficacy of these compounds.
Collapse
Affiliation(s)
- Morteza Sadeghi
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Seyedehmasoumeh Seyedebrahimi
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Miroliaei
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
5
|
Defant A, Carloni G, Innocenti N, Trobec T, Frangež R, Sepčić K, Mancini I. Structural Insights into the Marine Alkaloid Discorhabdin G as a Scaffold towards New Acetylcholinesterase Inhibitors. Mar Drugs 2024; 22:173. [PMID: 38667790 PMCID: PMC11051419 DOI: 10.3390/md22040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, Antarctic Latrunculia sponge-derived discorhabdin G was considered a hit for developing potential lead compounds acting as cholinesterase inhibitors. The hypothesis on the pharmacophore moiety suggested through molecular docking allowed us to simplify the structure of the metabolite. ADME prediction and drug-likeness consideration provided valuable support in selecting 5-methyl-2H-benzo[h]imidazo[1,5,4-de]quinoxalin-7(3H)-one as a candidate molecule. It was synthesized in a four-step sequence starting from 2,3-dichloronaphthalene-1,4-dione and evaluated as an inhibitor of electric eel acetylcholinesterase (eeAChE), human recombinant AChE (hAChE), and horse serum butyrylcholinesterase (BChE), together with other analogs obtained by the same synthesis. The candidate molecule showed a slightly lower inhibitory potential against eeAChE but better inhibitory activity against hAChE than discorhabdin G, with a higher selectivity for AChEs than for BChE. It acted as a reversible competitive inhibitor, as previously observed for the natural alkaloid. The findings from the in vitro assay were relatively consistent with the data available from the AutoDock Vina and Protein-Ligand ANTSystem (PLANTS) calculations.
Collapse
Affiliation(s)
- Andrea Defant
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (G.C.); (N.I.)
| | - Giacomo Carloni
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (G.C.); (N.I.)
- Unit of Structural Microbiology, Pasteur Institute, CNRS, University of Paris City, 75015 Paris, France
| | - Nicole Innocenti
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (G.C.); (N.I.)
| | - Tomaž Trobec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (T.T.); (R.F.)
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (T.T.); (R.F.)
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Ines Mancini
- Laboratory of Bioorganic Chemistry, Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (G.C.); (N.I.)
| |
Collapse
|
6
|
Krátký M, Nováčková K, Svrčková K, Švarcová M, Štěpánková Š. New 3-amino-2-thioxothiazolidin-4-one-based inhibitors of acetyl- and butyryl-cholinesterase: synthesis and activity. Future Med Chem 2024; 16:59-74. [PMID: 38047370 DOI: 10.4155/fmc-2023-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aim: 2-Thioxothiazolidin-4-one represents a versatile scaffold in drug development. The authors used it to prepare new potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors that can be utilized, e.g., to treat Alzheimer's disease. Materials & methods: 3-Amino-2-thioxothiazolidin-4-one was modified at the amino group or active methylene, using substituted benzaldehydes. The derivatives were evaluated for inhibition of AChE and BChE (Ellman's method). Results & conclusion: The derivatives were obtained with yields of 52-94%. They showed dual inhibition with IC50 values from 13.15 μM; many compounds were superior to rivastigmine. The structure-activity relationship favors nitrobenzylidene and 3,5-dihalogenosalicylidene scaffolds. AChE was inhibited noncompetitively, whereas BChE was inhibited with a mixed type of inhibition. Molecular docking provided insights into molecular interactions. Each enzyme is inhibited by a different binding mode.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Karolína Nováčková
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Katarína Svrčková
- Department of Biological & Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Markéta Švarcová
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, J. E. Purkinje University, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Šárka Štěpánková
- Department of Biological & Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| |
Collapse
|
7
|
Stępnik K, Kukula-Koch W, Płaziński W. Molecular and Pharmacokinetic Aspects of the Acetylcholinesterase-Inhibitory Potential of the Oleanane-Type Triterpenes and Their Glycosides. Biomolecules 2023; 13:1357. [PMID: 37759757 PMCID: PMC10526139 DOI: 10.3390/biom13091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The acetylcholinesterase-inhibitory potential of the oleanane-type triterpenes and their glycosides from thebark of Terminalia arjuna (Combreatceae), i.e.,arjunic acid, arjunolic acid, arjungenin, arjunglucoside I, sericic acid and arjunetin, is presented. The studies are based on in silico pharmacokinetic and biomimetic studies, acetylcholinesterase (AChE)-inhibitory activity tests and molecular-docking research. Based on the calculated pharmacokinetic parameters, arjunetin and arjunglucoside I are indicated as able to cross the blood-brain barrier. The compounds of interest exhibit a marked acetylcholinesterase inhibitory potential, which was tested in the TLC bioautography test. The longest time to reach brain equilibrium is observed for both the arjunic and arjunolic acids and the shortest one for arjunetin. All of the compounds exhibit a high and relatively similar magnitude of binding energies, varying from ca. -15 to -13 kcal/mol. The superposition of the most favorable positions of all ligands interacting with AChE is analyzed. The correlation between the experimentally determined IC50 values and the steric parameters of the molecules is investigated. The inhibition of the enzyme by the analyzed compounds shows their potential to be used as cognition-enhancing agents. For the most potent compound (arjunglucoside I; ARG), the kinetics of AChE inhibition were tested. The Michaelis-Menten constant (Km) for the hydrolysis of the acetylthiocholine iodide substrate was calculated to be 0.011 mM.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland;
| | - Wojciech Płaziński
- Department of Biopharmacy, Medical University of Lublin, ul. Chodźki 4a, 20-093 Lublin, Poland;
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| |
Collapse
|
8
|
Stępnik K, Kukula-Koch W, Plazinski W, Rybicka M, Gawel K. Neuroprotective Properties of Oleanolic Acid-Computational-Driven Molecular Research Combined with In Vitro and In Vivo Experiments. Pharmaceuticals (Basel) 2023; 16:1234. [PMID: 37765042 PMCID: PMC10536188 DOI: 10.3390/ph16091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Oleanolic acid (OA), as a ubiquitous compound in the plant kingdom, is studied for both its neuroprotective and neurotoxic properties. The mechanism of acetylcholinesterase (AChE) inhibitory potential of OA is investigated using molecular dynamic simulations (MD) and docking as well as biomimetic tests. Moreover, the in vitro SH-SY5Y human neuroblastoma cells and the in vivo zebrafish model were used. The inhibitory potential towards the AChE enzyme is examined using the TLC-bioautography assay (the IC50 value is 9.22 μM). The CH-π interactions between the central fragment of the ligand molecule and the aromatic cluster created by the His440, Phe288, Phe290, Phe330, Phe331, Tyr121, Tyr334, Trp84, and Trp279 side chains are observed. The results of the in vitro tests using the SH-SY5Y cells indicate that the viability rate is reduced to 71.5%, 61%, and 43% at the concentrations of 100 µg/mL, 300 µg/mL, and 1000 µg/mL, respectively, after 48 h of incubation, whereas cytotoxicity against the tested cell line with the IC50 value is 714.32 ± 32.40 µg/mL. The in vivo tests on the zebrafish prove that there is no difference between the control and experimental groups regarding the mortality rate and morphology (p > 0.05).
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie–Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland;
| | - Wojciech Plazinski
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland;
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Magda Rybicka
- Department of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, ul. Abrahama 58, 80-307 Gdańsk, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, ul. Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
| |
Collapse
|
9
|
Stępnik K, Kukula-Koch W, Plazinski W, Gawel K, Gaweł-Bęben K, Khurelbat D, Boguszewska-Czubara A. Significance of Astragaloside IV from the Roots of Astragalus mongholicus as an Acetylcholinesterase Inhibitor-From the Computational and Biomimetic Analyses to the In Vitro and In Vivo Studies of Safety. Int J Mol Sci 2023; 24:9152. [PMID: 37298103 PMCID: PMC10252989 DOI: 10.3390/ijms24119152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The main aim of the study was to assess the acetylcholinesterase-inhibitory potential of triterpenoid saponins (astragalosides) found in the roots of Astragalus mongholicus. For this purpose, the TLC bioautography method was applied and then the IC50 values were calculated for astragalosides II, III and IV (5.9 μM; 4.2 μM, and 4.0 μM, respectively). Moreover, molecular dynamics simulations were carried outto assess the affinity of the tested compounds for POPC and POPG-containing lipid bilayers, which in this case are the models of the blood-brain barrier (BBB). All determined free energy profiles confirmed that astragalosides exhibit great affinity for the lipid bilayer. A good correlation was obtained when comparing the logarithm of n-octanol/water partition coefficient (logPow) lipophilicity descriptor values with the smallest values of free energy of the determined 1D profiles. The affinity for the lipid bilayers changes in the same order as the corresponding logPow values, i.e.,: I > II > III~IV. All compounds exhibit a high and also relatively similar magnitude of binding energies, varying from ca. -55 to -51 kJ/mol. Apositive correlation between the experimentally-determined IC50 values and the theoretically-predicted binding energies expressed by the correlation coefficient value equal 0.956 was observed.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie–Skłodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland;
| | - Wojciech Plazinski
- Department of Biopharmacy, Medical University of Lublin, Chodźki Str. 4a, 20-093 Lublin, Poland;
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239 Kraków, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland;
| | - Daariimaa Khurelbat
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Mongolian National University of Medical Sciences, Zorig Str., Ulaanbaatar 14210, Mongolia;
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
10
|
Nagar S, Pigott M, Kukula-Koch W, Sheridan H. Unravelling Novel Phytochemicals and Anticholinesterase Activity in Irish Cladonia portentosa. Molecules 2023; 28:molecules28104145. [PMID: 37241886 DOI: 10.3390/molecules28104145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Acetylcholinesterase inhibitors remain the mainstay of symptomatic treatment for Alzheimer's disease. The natural world is rich in acetylcholinesterase inhibitory molecules, and research efforts to identify novel leads is ongoing. Cladonia portentosa, commonly known as reindeer lichen, is an abundant lichen species found in Irish Boglands. The methanol extract of Irish C. portentosa was identified as an acetylcholinesterase inhibitory lead using qualitative TLC-bioautography in a screening program. To identify the active components, the extract was deconvoluted using a successive extraction process with hexane, ethyl acetate and methanol to isolate the active fraction. The hexane extract demonstrated the highest inhibitory activity and was selected for further phytochemical investigations. Olivetolic acid, 4-O-methylolivetolcarboxylic acid, perlatolic acid and usnic acid were isolated and characterized using ESI-MS and two-dimensional NMR techniques. LC-MS analysis also determined the presence of the additional usnic acid derivatives, placodiolic and pseudoplacodiolic acids. Assays of the isolated components confirmed that the observed anticholinesterase activity of C. portentosa can be attributed to usnic acid (25% inhibition at 125 µM) and perlatolic acid (20% inhibition at 250 µM), which were both reported inhibitors. This is the first report of isolation of olivetolic and 4-O-methylolivetolcarboxylic acids and the identification of placodiolic and pseudoplacodiolic acids from C. portentosa.
Collapse
Affiliation(s)
- Shipra Nagar
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 02, D02 PN40 Dublin, Ireland
| | - Maria Pigott
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 02, D02 PN40 Dublin, Ireland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Helen Sheridan
- NatPro Centre, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 02, D02 PN40 Dublin, Ireland
| |
Collapse
|
11
|
Aminin D. Frontiers in New Drug Discovery: From Molecular Targets to Preclinical Trials. Int J Mol Sci 2023; 24:ijms24098321. [PMID: 37176026 PMCID: PMC10179645 DOI: 10.3390/ijms24098321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The intention of this Special Issue is to focus on new aspects of drug discovery, including the search for new molecular targets of various diseases, the creation of new modern methods for diagnosing diseases, the development of new test systems and kits for assessing the selectivity and effectiveness of new drugs, the study of the molecular mechanisms of biologically active compounds, the formulation of new drugs, pharmacokinetic and pharmacodynamic studies and preclinical trials of important molecules [...].
Collapse
Affiliation(s)
- Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
12
|
Cholinesterase Inhibitors from an Endophytic Fungus Aspergillus niveus Fv-er401: Metabolomics, Isolation and Molecular Docking. Molecules 2023; 28:molecules28062559. [PMID: 36985531 PMCID: PMC10052609 DOI: 10.3390/molecules28062559] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Alzheimer’s disease poses a global health concern with unmet demand requiring creative approaches to discover new medications. In this study, we investigated the chemical composition and the anticholinesterase activity of Aspergillus niveus Fv-er401 isolated from Foeniculum vulgare (Apiaceae) roots. Fifty-eight metabolites were identified using UHPLC-MS/MS analysis of the crude extract. The fungal extract showed acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory effects with IC50 53.44 ± 1.57 and 48.46 ± 0.41 µg/mL, respectively. Two known metabolites were isolated, terrequinone A and citrinin, showing moderate AChE and BuChE inhibitory activity using the Ellman’s method (IC50 = 11.10 ± 0.38 µg/mL and 5.06 ± 0.15 µg/mL, respectively for AChE, and IC50 15.63 ± 1.27 µg/mL and 8.02 ± 0.08 µg/mL, respectively for BuChE). As evidenced by molecular docking, the isolated compounds and other structurally related metabolites identified by molecular networking had the required structural features for AChE and BuChE inhibition. Where varioxiranol G (−9.76 and −10.36 kcal/mol), penicitrinol B (−9.50 and −8.02 kcal/mol), dicitrinol A (−8.53 and −7.98 kcal/mol) and asterriquinone CT5 (−8.02 and −8.25 kcal/mol) showed better binding scores as AChE and BuChE inhibitors than the co-crystallized inhibitor (between −7.89 and 7.82 kcal/mol) making them promising candidates for the development of new drugs to treat Alzheimer’s.
Collapse
|