1
|
Maffei ME, Balestrini R, Costantino P, Lanfranco L, Morgante M, Battistelli A, Del Bianco M. The physiology of plants in the context of space exploration. Commun Biol 2024; 7:1311. [PMID: 39394270 PMCID: PMC11470014 DOI: 10.1038/s42003-024-06989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
The stress that the space environment can induce on plant physiology is of both abiotic and biotic nature. The abiotic space environment is characterized by ionizing radiation and altered gravity, geomagnetic field (GMF), pressure, and light conditions. Biotic interactions include both pathogenic and beneficial interactions. Here, we provide an overall picture of the effects of abiotic and biotic space-related factors on plant physiology. The knowledge required for the success of future space missions will lead to a better understanding of fundamental aspects of plant physiological responses, thus providing useful tools for plant breeding and agricultural practices on Earth.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/a, 10135, Turin, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, Via Amendola 165/A, 70126, Bari, Italy
| | - Paolo Costantino
- Department of Biology and Biotechnology "C. Darwin", University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Michele Morgante
- Institute of Applied Genomics, University of Udine, Via Jacopo Linussio 51, 33100, Udine, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, Viale Guglielmo Marconi 2, 05010, Porano, Italy
| | - Marta Del Bianco
- Italian Space Agency, Viale del Politecnico s.n.c., 00133, Rome, Italy.
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161, Roma, Italy.
| |
Collapse
|
2
|
Sarimov RM, Serov DA, Gudkov SV. Hypomagnetic Conditions and Their Biological Action (Review). BIOLOGY 2023; 12:1513. [PMID: 38132339 PMCID: PMC10740674 DOI: 10.3390/biology12121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
The geomagnetic field plays an important role in the existence of life on Earth. The study of the biological effects of (hypomagnetic conditions) HMC is an important task in magnetobiology. The fundamental importance is expanding and clarifying knowledge about the mechanisms of magnetic field interaction with living systems. The applied significance is improving the training of astronauts for long-term space expeditions. This review describes the effects of HMC on animals and plants, manifested at the cellular and organismal levels. General information is given about the probable mechanisms of HMC and geomagnetic field action on living systems. The main experimental approaches are described. We attempted to systematize quantitative data from various studies and identify general dependencies of the magnetobiology effects' value on HMC characteristics (induction, exposure duration) and the biological parameter under study. The most pronounced effects were found at the cellular level compared to the organismal level. Gene expression and protein activity appeared to be the most sensitive to HMC among the molecular cellular processes. The nervous system was found to be the most sensitive in the case of the organism level. The review may be of interest to biologists, physicians, physicists, and specialists in interdisciplinary fields.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
3
|
Fiorillo A, Parmagnani AS, Visconti S, Mannino G, Camoni L, Maffei ME. 14-3-3 Proteins and the Plasma Membrane H +-ATPase Are Involved in Maize ( Zea mays) Magnetic Induction. PLANTS (BASEL, SWITZERLAND) 2023; 12:2887. [PMID: 37571041 PMCID: PMC10421175 DOI: 10.3390/plants12152887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The geomagnetic field (GMF) is a natural component of the biosphere, and, during evolution, all organisms experienced its presence while some evolved the ability to perceive magnetic fields (MF). We studied the response of 14-3-3 proteins and the plasma membrane (PM) proton pump H+-ATPase to reduced GMF values by lowering the GMF intensity to a near-null magnetic field (NNMF). Seedling morphology, H+-ATPase activity and content, 14-3-3 protein content, binding to PM and phosphorylation, gene expression, and ROS quantification were assessed in maize (Zea mays) dark-grown seedlings. Phytohormone and melatonin quantification were also assessed by LG-MS/MS. Our results suggest that the GMF regulates the PM H+-ATPase, and that NNMF conditions alter the proton pump activity by reducing the binding of 14-3-3 proteins. This effect was associated with both a reduction in H2O2 and downregulation of genes coding for enzymes involved in ROS production and scavenging, as well as calcium homeostasis. These early events were followed by the downregulation of IAA synthesis and gene expression and the increase in both cytokinin and ABA, which were associated with a reduction in root growth. The expression of the homolog of the MagR gene, ZmISCA2, paralleled that of CRY1, suggesting a possible role of ISCA in maize magnetic induction. Interestingly, melatonin, a widespread molecule present in many kingdoms, was increased by the GMF reduction, suggesting a still unknown role of this molecule in magnetoreception.
Collapse
Affiliation(s)
- Anna Fiorillo
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.F.); (S.V.)
| | - Ambra S. Parmagnani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy; (A.S.P.); (G.M.)
| | - Sabina Visconti
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.F.); (S.V.)
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy; (A.S.P.); (G.M.)
| | - Lorenzo Camoni
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.F.); (S.V.)
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy; (A.S.P.); (G.M.)
| |
Collapse
|
4
|
Zhang Y, Zhang Y, Zhao J, He J, Xuanyuan Z, Pan W, Sword GA, Chen F, Wan G. Probing Transcriptional Crosstalk between Cryptochromes and Iron-sulfur Cluster Assembly 1 ( MagR) in the Magnetoresponse of a Migratory Insect. Int J Mol Sci 2023; 24:11101. [PMID: 37446278 DOI: 10.3390/ijms241311101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Many organisms can sense and respond to magnetic fields (MFs), with migratory species in particular utilizing geomagnetic field information for long-distance migration. Cryptochrome proteins (Crys) along with a highly conserved Iron-sulfur cluster assembly protein (i.e., MagR) have garnered significant attention for their involvement in magnetoresponse (including magnetoreception). However, in vivo investigations of potential transcriptional crosstalk between Crys and MagR genes have been limited. The brown planthopper, Nilaparvata lugens, is a major migratory pest insect and an emerging model for studying MF intensity-related magnetoresponse. Here, we explored in vivo transcriptional crosstalk between Crys (Cry1 and Cry2) and MagR in N. lugens. The expression of Crys and MagR were found to be sensitive to MF intensity changes as small as several micro-teslas. Knocking down MagR expression led to a significant downregulation of Cry1, but not Cry2. The knockdown of either Cry1 or Cry2 individually did not significantly affect MagR expression. However, their double knockdown resulted in significant upregulation of MagR. Our findings clearly indicate transcriptional crosstalk between MagR and Crys known to be involved in magnetoresponse. This work advances the understanding of magnetoresponse signaling and represents a key initial step towards elucidating the functional consequences of these novel in vivo interactions.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingyu Zhao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinglan He
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongjin Xuanyuan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Weidong Pan
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guijun Wan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Pest Management on Crops in East China, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|