1
|
Miao Z, Chang D, Du X, Sun C. Berberrubine protects against cisplatin-induced ototoxicity by promoting folate biosynthesis. Front Pharmacol 2025; 15:1496917. [PMID: 39850559 PMCID: PMC11754208 DOI: 10.3389/fphar.2024.1496917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Objective This research investigated the possible shielding properties of BB (Berberrubine) against the harmful auditory effects of cisplatin, preliminarily delving into the underlying mechanisms responsible for this protection. Methods HEI-OC1 cell viability was determined using a Cell Counting Kit-8 (CCK-8). The impact of BB on cochlear hair cells was studied through in vitro cochlear explants culture. Apoptosis levels were measured through Annexin V-PI, Cleaved Caspase-3, and TUNEL staining. The level of ROS (reactive oxygen species) was measured through the application of DCFH-DA, MitoSOX, and JC-1 fluorescent dyes for staining. Immunofluorescence analysis of cochlear samples from mice was conducted to quantify the hair cell count, and concurrently, ABR (Auditory Brainstem Response) testing was utilized to evaluate auditory function. The mechanism of action of BB was explored using RNA-Seq and qRT-PCR analysis. Results BB significantly improved cell survival rates under cisplatin treatment, reduced levels of apoptotic markers (TUNEL, Cleaved Caspase-3, Annexin V-PI), decreased ROS and MitoSOX levels, and improved JC-1 signals in both HEI-OC1 cells and cochlear hair cells in cochlear explants culture. Animal studies demonstrated that treatment with BB enhanced the survival of cochlear hair cells, reduced hearing impairment caused by cisplatin in mice. RNA-seq and qRT-PCR analysis revealed that BB influenced the expression levels of multiple genes (Ccnd2, Reln, Pgf, Mylk3, Ppplr12c, Thbsl), by promoting folate biosynthesis for hearing protection. Conclusion Our findings suggest that BB protects against cisplatin-induced hearing damage by enhancing folate biosynthesis, decreasing intracellular ROS levels, and inhibiting apoptosis.
Collapse
Affiliation(s)
| | | | | | - Changling Sun
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Teng H, Sun X, Eglitis R, Wang X, Zhang W, Wang H, Qu S, Yu Z, Liu S, Zhao Y. Chiisanoside from the Leaves of Acanthopanax sessiliflorus Can Resist Cisplatin-Induced Ototoxicity by Maintaining Cytoskeletal Homeostasis and Inhibiting Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25720-25742. [PMID: 39505327 DOI: 10.1021/acs.jafc.4c07994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Ototoxicity is a common side effect of cisplatin cancer treatment, potentially leading to hearing loss. This study demonstrated the significant protective activity of Acanthopanax sessiliflorus (A. sessiliflorus) leaves against cisplatin-induced ototoxicity (CIO), investigated the active compounds, and elucidated their mechanisms in countering CIO. UPLC-Q/TOF-MS analysis identified 79 compounds. Network pharmacology and activity screening determined that chiisanoside (CSS) plays a crucial role in combating CIO. Transcriptomics combined with network pharmacology analysis and experiments revealed that CSS activates the Dock1/PIP5K1A pathway to suppress the actin-severing protein gelsolin, protecting hair cells from cisplatin-induced cytoskeleton damage. CSS also activates the SLC7A11/GPX4 pathway via TGFBR2, reducing lipid peroxidation and intracellular iron accumulation to suppress cisplatin-induced ferroptosis. This study discovers that the major component CSS in A. sessiliflorus leaves reverses CIO by regulating actin homeostasis via Dock1 and inhibiting ferroptosis through TGFBR2, providing a theoretical basis for expanding CIO treatment targets and related drug development.
Collapse
Affiliation(s)
- Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| | - Xialin Sun
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
- College of Pharmacy, Jilin Medical University, Jilin, Jilin Province 132013, China
| | - Roberts Eglitis
- Institute of Solid State Physics, University of Latvia, Riga LV-1067, Latvia
| | - Xv Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| | - Wenxin Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| | - Haijing Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| | - Shurong Qu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| | - Zhengxuan Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| |
Collapse
|
3
|
Xu B, Wang G, Xu L, Ding L, Li S, Han Y. Vitamin C ameliorates D-galactose-induced senescence in HEI-OC1 cells by inhibiting the ROS/NF-κB pathway. Mol Biol Rep 2024; 51:1157. [PMID: 39546096 DOI: 10.1007/s11033-024-10098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Cochlear hair cell senescence is one of the major causes of age-related hearing loss (ARHL) and is significantly related to reactive oxygen species (ROS) accumulation. Research shows that vitamin C (VC) can inhibit ROS accumulation; however, its association with cochlear hair cell senescence remains elusive. METHODS AND RESULTS Firstly, a cellular senescence model was established using D-galactose (D-gal) induced HEI-OC1 cells for 24 h. Senescent HEI-OC1 cells were then continued to be treated with the addition of VC or ROS inhibitor (N-acetylcysteine; NAC) for another 24 h, and explored the impact of VC on senescent cochlear hair cell and the potential regulatory mechanisms. The results indicated that D-gal-induced senescent HEI-OC1 cells, manifested as decreased cell viability, increased β-galactosidase activity and p21 protein level, and ROS and pro-inflammatory factors were upregulated, and NF-κB p65 phosphorylation was enhanced. However, the use of VC or NAC can significantly ameliorate these effects and improve HEI-OC1 cell senescence. CONCLUSIONS This research indicates that VC can ameliorate D-gal-induced senescence of HEI-OC1 cochlear hair cells, and its protective effect may be related to the inhibition of the ROS/NF-κB pathway, which provides a new research direction for the prevention and treatment of ARHL.
Collapse
Affiliation(s)
- Beibei Xu
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Guanghui Wang
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Luan Xu
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Liya Ding
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Shumin Li
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Yuefeng Han
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui, 233000, China.
| |
Collapse
|
4
|
Kong S, Xiao Y, Chen L, Jin Y, Qiao R, Xu K, Xu L, Wang H. Apigenin attenuates cisplatin-induced hair cell damage in the zebrafish lateral line. Food Chem Toxicol 2024; 194:115099. [PMID: 39521239 DOI: 10.1016/j.fct.2024.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Cisplatin, a widely used chemotherapy drug, is notorious for causing ototoxicity, which leads to irreversible sensorineural hearing loss by damaging cochlear sensory hair cells (HCs), spiral ganglion neurons (SGNs), and the stria vascularis (SV). Mechanisms include DNA adduct formation, mitochondrial dysfunction, oxidative stress, and inflammation, ultimately triggering cell death pathways like apoptosis, necroptosis, pyroptosis, or ferroptosis. Apigenin, a natural flavonoid found in various foods and beverages, possesses antioxidant, anti-inflammatory, and anti-tumor properties. Despite these benefits, its potential to mitigate cisplatin-induced ototoxicity remains unexplored. To investigate, we administered varying concentrations of apigenin (1 μM, 20 μM, 100 μM, and 250 μM) alongside cisplatin (200 μM) to zebrafish larvae at 5 days post fertilization. Cisplatin significantly reduced lateral line HCs, impacting auditory function as shown in startle response tests. However, co-administration with apigenin preserved lateral line HCs and mitigated cisplatin-induced hearing loss. In larvae exposed to cisplatin, TUNEL assay confirmed significant HCs apoptosis, which apigenin effectively countered by suppressing reactive oxygen species accumulation in lateral line HCs. RNA-seq analysis highlighted apigenin's role in modulating apoptosis-related pathways, supporting its protective effects against cisplatin-induced ototoxicity. These findings underscore apigenin's potential as a crucial protective agent against cisplatin-induced ototoxicity, meriting further investigation for clinical applications.
Collapse
Affiliation(s)
- Shuhui Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Yun Xiao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Lei Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Yu Jin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Reifeng Qiao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Kaifan Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong Institute of Otorhinolaryngology, Jinan, Shandong, China.
| |
Collapse
|
5
|
Xu M, Zhong S, Zhu N, Wang S, Wang J, Li X, Ren X, Kong H. Oxidative and endoplasmic reticulum stress in diabetes-related hearing loss: Protective effects of thioredoxin. Life Sci 2024; 359:123223. [PMID: 39515416 DOI: 10.1016/j.lfs.2024.123223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Diabetes mellitus (DM) induces complex physiological changes in the inner ear environment. This study investigates the roles of oxidative stress (OS) and endoplasmic reticulum stress (ERS) in diabetes-related hearing loss (DRHL) and explores the potential of thioredoxin (Trx) in regulating OS, ERS, and apoptosis-related factors to mitigate the progression of hearing impairment. We conducted auditory and serological assessments in 63 patients with type 2 diabetes and 30 healthy controls. Type 2 diabetes models were induced in wild-type and Trx transgenic (Tg) mice, with auditory brainstem response (ABR) used to evaluate hearing changes. Cochlear tissues were isolated to analyse markers of apoptosis, OS, and ERS. Both patients with diabetes and mouse models exhibited hearing loss, alongside increased serum levels of Trx1, TXNIP, and AOPP, indicating oxidative damage. H&E and succinate dehydrogenase (SDH) staining revealed varying degrees of hair cell loss from the base to the apex of the cochlea in diabetic mice, with decreased expression of the hair cell protein prestin gene. Notably, Tg mice showed significant delay in hearing loss progression. In vitro, advanced glycation end-products (AGEs) induced OS and ERS in cochlear-like HEI-OC1 cells, while Trx overexpression enhanced Nrf2 activity, alleviating AGE-induced cellular stress. In conclusion, Trx exhibits protective effects against DRHL, potentially by enhancing Nrf2/HO-1/SOD2 function to reduce OS and ERS.
Collapse
Affiliation(s)
- Meng Xu
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Shiwen Zhong
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Na Zhu
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Sifan Wang
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Jingyi Wang
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Xiang Li
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China.
| | - Hui Kong
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China.
| |
Collapse
|
6
|
Xu Y, Zhao H, Wang F, Xu S, Wang C, Li Y, Wang Y, Nong H, Zhang J, Cao Z, Chen C, Li J. SERCA2 protects against cisplatin-induced damage of auditory cells: Possible relation with alleviation of ER stress. Toxicol Appl Pharmacol 2024; 486:116947. [PMID: 38688426 DOI: 10.1016/j.taap.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
AIMS SERCA2, one of the P-type pumps encoded by gene ATP2A2, is the only calcium reflux channel of the endoplasmic reticulum (ER) and participates in maintaining calcium homeostasis. The present study was designed to explore SERCA2 expression pattern in auditory hair cells and the possible mechanism underlying the effects of SERCA2 on cisplatin-induced ototoxicity. MAIN METHODS The SERCA2 expression pattern in cochlea hair cells and HEI-OC1 cells was measured by Western blot (WB) and immunofluorescence staining. The apoptosis and its related factors were detected by TUNEL assay and WB. The expression levels of ER stress-related factors, ATF6, PERK, IRE1α, and GRP78, were measured via WB. As for the determination of SERCA2 overexpression and knockdown, plasmids and lentiviral vectors were constructed, respectively. KEY FINDINGS We found that SERCA2 was highly expressed in cochlea hair cells and HEI-OC1 cells. Of note, the level of SERCA2 expression in neonatal mice was remarkably higher than that in adult mice. Under the exposure of 30 μM cisplatin, SERCA2 was down-regulated significantly compared with the control group. In addition, cisplatin administration triggered the occurrence of ER stress and apoptosis. Those events were reversed by overexpressing SERCA2. On the contrary, SERCA2 knockdown could aggravate the above processes. SIGNIFICANCE The findings from the present study disclose, for the first time, that SERCA2 is abundantly expressed in cochlea hair cells, and the suppression of SERCA2 caused by cisplatin could trigger ER homeostasis disruption, thereby implying that SERCA2 might be a promising target to prevent cisplatin-induced cytotoxicity of hair cells.
Collapse
Affiliation(s)
- Yue Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Hao Zhao
- Department of Otolaryngology-Head and Neck Surgery, People's Hospital, Peking University, Beijing 100000, China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Shuai Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Chen Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Yanan Li
- Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yajie Wang
- Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Huiming Nong
- Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Junhong Zhang
- Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhixin Cao
- Department of Pathology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Chengfang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong 250021, China.
| |
Collapse
|
7
|
Guidotti L, Tomassi E, Marracci S, Lai M, Lapi D, Pesi R, Pucci L, Novellino E, Albi E, Garcia-Gil M. Effects of Nutraceuticals on Cisplatin-Induced Cytotoxicity in HEI-OC1 Cells. Int J Mol Sci 2023; 24:17416. [PMID: 38139245 PMCID: PMC10743635 DOI: 10.3390/ijms242417416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Cisplatin is a chemotherapeutic drug for the treatment of several solid tumors, whose use is limited by its nephrotoxicity, neurotoxicity, ototoxicity, and development of resistance. The toxicity is caused by DNA cross-linking, increase in reactive oxygen species and/or depletion of cell antioxidant defenses. The aim of the work was to study the effect of antioxidant compounds (Lisosan G, Taurisolo®) or hydrogen sulfide (H2S)-releasing compounds (erucin) in the auditory HEI-OC1 cell line treated with cisplatin. Cell viability was determined using the MTT assay. Caspase and sphingomyelinase activities were measured by fluorometric and colorimetric methods, respectively. Expression of transcription factors, apoptosis hallmarks and genes codifying for antioxidant response proteins were measured by Western blot and/or RT-qPCR. Lisosan G, Taurisolo® and erucin did not show protective effects. Sodium hydrosulfide (NaHS), a donor of H2S, increased the viability of cisplatin-treated cells and the transcription of heme oxygenase 1, superoxide dismutase 2, NAD(P)H quinone dehydrogenase type 1 and the catalytic subunit of glutamate-cysteine ligase and decreased reactive oxygen species (ROS), the Bax/Bcl2 ratio, caspase-3, caspase-8 and acid sphingomyelinase activity. Therefore, NaHS might counteract the cytotoxic effect of cisplatin by increasing the antioxidant response and by reducing ROS levels and caspase and acid sphingomyelinase activity.
Collapse
Affiliation(s)
- Lorenzo Guidotti
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
| | - Elena Tomassi
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (E.T.); (L.P.)
| | - Silvia Marracci
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, Strada Statale del Brennero 2, 56127 Pisa, Italy;
| | - Dominga Lapi
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
| | - Rossana Pesi
- Biochemistry Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy;
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (E.T.); (L.P.)
| | - Ettore Novellino
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, Interno Orto Botanico, University of Perugia, Via Romana, 06126 Perugia, Italy;
| | - Mercedes Garcia-Gil
- General Physiology Unit, Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (L.G.); (S.M.); (D.L.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
8
|
Tan WJT, Vlajkovic SM. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int J Mol Sci 2023; 24:16545. [PMID: 38003734 PMCID: PMC10671929 DOI: 10.3390/ijms242216545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its clinical use is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and retinal toxicity. Cisplatin-induced ototoxicity manifests as irreversible, bilateral, high-frequency sensorineural hearing loss in 40-60% of adults and in up to 60% of children. Hearing loss can lead to social isolation, depression, and cognitive decline in adults, and speech and language developmental delays in children. Cisplatin causes hair cell death by forming DNA adducts, mitochondrial dysfunction, oxidative stress, and inflammation, culminating in programmed cell death by apoptosis, necroptosis, pyroptosis, or ferroptosis. Contemporary medical interventions for cisplatin ototoxicity are limited to prosthetic devices, such as hearing aids, but these have significant limitations because the cochlea remains damaged. Recently, the U.S. Food and Drug Administration (FDA) approved the first therapy, sodium thiosulfate, to prevent cisplatin-induced hearing loss in pediatric patients with localized, non-metastatic solid tumors. Other pharmacological treatments for cisplatin ototoxicity are in various stages of preclinical and clinical development. This narrative review aims to highlight the molecular mechanisms involved in cisplatin-induced ototoxicity, focusing on cochlear inflammation, and shed light on potential antioxidant and anti-inflammatory therapeutic interventions to prevent or mitigate the ototoxic effects of cisplatin. We conducted a comprehensive literature search (Google Scholar, PubMed) focusing on publications in the last five years.
Collapse
Affiliation(s)
- Winston J. T. Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Srdjan M. Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
9
|
Rybak LP, Alberts I, Patel S, Al Aameri RFH, Ramkumar V. Effects of natural products on cisplatin ototoxicity and chemotherapeutic efficacy. Expert Opin Drug Metab Toxicol 2023; 19:635-652. [PMID: 37728555 DOI: 10.1080/17425255.2023.2260737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Cisplatin is a very effective chemotherapeutic agent against a variety of solid tumors. Unfortunately, cisplatin causes permanent sensorineural hearing loss in at least two-thirds of patients treated. There are no FDA approved drugs to prevent this serious side effect. AREAS COVERED This paper reviews various natural products that ameliorate cisplatin ototoxicity. These compounds are strong antioxidants and anti-inflammatory agents. This review includes mostly preclinical studies but also discusses a few small clinical trials with natural products to minimize hearing loss from cisplatin chemotherapy in patients. The interactions of natural products with cisplatin in tumor-bearing animal models are highlighted. A number of natural products did not interfere with cisplatin anti-tumor efficacy and some agents actually potentiated cisplatin anti-tumor activity. EXPERT OPINION There are a number of natural products or their derivatives that show excellent protection against cisplatin ototoxicity in preclinical studies. There is a need to insure uniform standards for purity of drugs derived from natural sources and to ensure adequate pharmacokinetics and safety of these products. Natural products that protect against cisplatin ototoxicity and augment cisplatin's anti-tumor effects in multiple studies of tumor-bearing animals are most promising for advancement to clinical trials. The most promising natural products include honokiol, sulforaphane, and thymoquinone.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Ian Alberts
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shree Patel
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|