1
|
Baró EL, Catti F, Estarellas C, Ghashghaei O, Lavilla R. Drugs from drugs: New chemical insights into a mature concept. Drug Discov Today 2024; 29:104212. [PMID: 39442750 DOI: 10.1016/j.drudis.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Developing new drugs from marketed ones is a well-established and successful approach in drug discovery. We offer a unified view of this field, focusing on the new chemical aspects of the involved approaches: (a) chemical transformation of the original drugs (late-stage modifications, molecular editing), (b) prodrug strategies, and (c) repurposing as a tool to develop new hits/leads. Special focus is placed on the molecular structure of the drugs and their synthetic feasibility. The combination of experimental advances and new computational approaches, including artificial intelligence methods, paves the way for the evolution of the drugs from drugs concept.
Collapse
Affiliation(s)
- Eloy Lozano Baró
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona and Institute of Biomedicine UB (IBUB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Federica Catti
- Faculty of Science and Mathematics, Arkansas State University Campus Querétaro, Carretera Estatal 100, km 17.5. C.P. 76270, Municipio de Colón, Estado de Querétaro, Mexico
| | - Carolina Estarellas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
| | - Ouldouz Ghashghaei
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona and Institute of Biomedicine UB (IBUB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona and Institute of Biomedicine UB (IBUB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
2
|
Hassan NF, El-Ansary MR, El-Ansary AR, El-Saied MA, Zaki OS. Unveiling the protective potential of mirabegron against thioacetamide-induced hepatic encephalopathy in rats: Insights into cAMP/PPAR-γ/p-ERK1/2/p S536 NF-κB p 65 and p-CREB/BDNF/TrkB in parallel with oxidative and apoptotic trajectories. Biochem Pharmacol 2024; 229:116504. [PMID: 39179118 DOI: 10.1016/j.bcp.2024.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Hepatic encephalopathy (HE) is one of the most prevalent and severe hepatic and brain disorders in which escalation of the oxidative, inflammatory and apoptotic trajectories pathologically connects acute liver injury with neurological impairment. Mirabegron (Mira) is a beta3 adrenergic receptor agonist with proven antioxidant and anti-inflammatory activities. The current research pointed to exploring Mira's hepato-and neuroprotective impacts against thioacetamide (TAA)-induced HE in rats. Rats were distributed into three experimental groups: the normal control group, the TAA group, received TAA (200 mg/kg/day for three consecutive days) and the Mira-treated group received Mira (10 mg/kg/day; oral gavage) for 15 consecutive days and intoxicated with TAA from the 13th to the 15th day of the experimental period. Mira counteracted hyperammonemia, enhanced rats' locomotor capability and motor coordination. It attenuated hepatic/neurological injuries by its antioxidant, anti-apoptotic as well as anti-inflammatory potentials. Mira predominantly targeted cyclic adenosine monophosphate (cAMP)/phosphorylated extracellular signal-regulated kinase (p-Erk1/2)/peroxisome proliferator-activated receptor gamma (PPARγ) dependent pathways via downregulation of p S536-nuclear factor kappa B p65 (p S536 NF-κB p 65)/tumor necrosis alpha (TNF-α) axis. Meanwhile, it attenuated nuclear factor erythroid 2-related factor (Nrf2) depletion in parallel with restoring of the neuroprotective defensive pathway by upregulation of cerebral cAMP/PPAR-γ/p-ERK1/2 and p-CREB/BDNF/TrkB besides reduction of GFAP immunoreactivity. Mira showed anti-apoptotic activity through inhibition of Bax immunoreactivity and elevation of Bcl2. To summarize, Mira exhibited a hepato-and neuroprotective effect against TAA-induced HE in rats via shielding antioxidant defense and mitigation of the pathological inflammatory and apoptotic axis besides upregulation of neuroprotective signaling pathways.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Amira R El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omnia S Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
3
|
Chataway J, Wade C, Murphy E, Lynch DS. An alternative therapeutic approach to haematopoetic stem cell transplantation in early cerebral adrenoleukodystrophy. Brain 2024; 147:3271-3273. [PMID: 39110640 DOI: 10.1093/brain/awae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 10/05/2024] Open
Abstract
This scientific commentary refers to ‘Leriglitazone halts disease progression in adult patients with early cerebral adrenoleukodystrophy’ by Golse et al. (https://doi.org/10.1093/brain/awae169).
Collapse
Affiliation(s)
- Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, WC1N 5EH, UK
- Inherited White Matters Disorders Highly Specialised Service, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
- National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, W1T 7DN, UK
| | - Charles Wade
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, WC1N 5EH, UK
- Inherited White Matters Disorders Highly Specialised Service, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
| | - Elaine Murphy
- Inherited White Matters Disorders Highly Specialised Service, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
- Charles Dent Metabolic Unit, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, WC1N 3AX, UK
| | - David S Lynch
- Inherited White Matters Disorders Highly Specialised Service, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, WC1N 3BG, UK
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
4
|
Durairajan SSK, Singh AK, Iyaswamy A. Peroxisome proliferator-activated receptor agonists: A new hope towards the management of alcoholic liver disease. World J Gastroenterol 2024; 30:3965-3971. [PMID: 39351059 PMCID: PMC11438660 DOI: 10.3748/wjg.v30.i35.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
In this editorial, we examine a paper by Koizumi et al, on the role of peroxisome proliferator-activated receptor (PPAR) agonists in alcoholic liver disease (ALD). The study determined whether elafibranor protected the intestinal barrier and reduced liver fibrosis in a mouse model of ALD. The study also underlines the role of PPARs in intestinal barrier function and lipid homeostasis, which are both affected by ALD. Effective therapies are necessary for ALD because it is a critical health issue that affects people worldwide. This editorial analyzes the possibility of PPAR agonists as treatments for ALD. As key factors of inflammation and metabolism, PPARs offer multiple methods for managing the complex etiology of ALD. We assess the abilities of PPARα, PPARγ, and PPARβ/δ agonists to prevent steatosis, inflammation, and fibrosis due to liver diseases. Recent research carried out in preclinical and clinical settings has shown that PPAR agonists can reduce the severity of liver disease. This editorial discusses the data analyzed and the obstacles, advantages, and mechanisms of action of PPAR agonists for ALD. Further research is needed to understand the efficacy, safety, and mechanisms of PPAR agonists for treating ALD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Abhay Kumar Singh
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| |
Collapse
|
5
|
Puighermanal E, Luna-Sánchez M, Gella A, van der Walt G, Urpi A, Royo M, Tena-Morraja P, Appiah I, de Donato MH, Menardy F, Bianchi P, Esteve-Codina A, Rodríguez-Pascau L, Vergara C, Gómez-Pallarès M, Marsicano G, Bellocchio L, Martinell M, Sanz E, Jurado S, Soriano FX, Pizcueta P, Quintana A. Cannabidiol ameliorates mitochondrial disease via PPARγ activation in preclinical models. Nat Commun 2024; 15:7730. [PMID: 39231983 PMCID: PMC11375224 DOI: 10.1038/s41467-024-51884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Mutations in mitochondrial energy-producing genes lead to a heterogeneous group of untreatable disorders known as primary mitochondrial diseases (MD). Leigh syndrome (LS) is the most common pediatric MD and is characterized by progressive neuromuscular affectation and premature death. Here, we show that daily cannabidiol (CBD) administration significantly extends lifespan and ameliorates pathology in two LS mouse models, and improves cellular function in fibroblasts from LS patients. CBD delays motor decline and neurodegenerative signs, improves social deficits and breathing abnormalities, decreases thermally induced seizures, and improves neuropathology in affected brain regions. Mechanistically, we identify peroxisome proliferator-activated receptor gamma (PPARγ) as a key nuclear receptor mediating CBD's beneficial effects, while also providing proof of dysregulated PPARγ expression and activity as a common feature in both mouse neurons and fibroblasts from LS patients. Taken together, our results provide the first evidence for CBD as a potential treatment for LS.
Collapse
Affiliation(s)
- Emma Puighermanal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Marta Luna-Sánchez
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Gella
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gunter van der Walt
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andrea Urpi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María Royo
- Institute of Neuroscience, CSIC-UMH, San Juan de Alicante, Spain
| | - Paula Tena-Morraja
- Celltec-UB, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Isabella Appiah
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Fabien Menardy
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Patrizia Bianchi
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | | | | | | | - Giovanni Marsicano
- Inserm Université de Bordeaux, U1215 Neurocentre Magendie, Bordeaux, France
| | - Luigi Bellocchio
- Inserm Université de Bordeaux, U1215 Neurocentre Magendie, Bordeaux, France
| | | | - Elisenda Sanz
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sandra Jurado
- Institute of Neuroscience, CSIC-UMH, San Juan de Alicante, Spain
| | - Francesc Xavier Soriano
- Celltec-UB, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | | | - Albert Quintana
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
6
|
Zhang N, Wei F, Ning S, Hu J, Shi H, Yao Z, Tang M, Zhang Y, Gong J, Ge J, Cui Z. PPARγ Agonist Rosiglitazone and Antagonist GW9662: Antihypertensive Effects on Chronic Intermittent Hypoxia-Induced Hypertension in Rats. J Cardiovasc Transl Res 2024; 17:803-815. [PMID: 38411834 DOI: 10.1007/s12265-024-10499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
The increased incidence of hypertension associated with obstructive sleep apnea (OSA) presents significant physical, psychological, and economic challenges. Peroxisome proliferator-activated receptor gamma (PPARγ) plays a role in both OSA and hypertension, yet the therapeutic potential of PPARγ agonists and antagonists for OSA-related hypertension remains unexplored. Therefore, we constructed a chronic intermittent hypoxia (CIH)-induced hypertension rat model that mimics the pathogenesis of OSA-related hypertension in humans. The model involved administering PPARγ agonist rosiglitazone (RSG), PPARγ antagonist GW9662, or normal saline, followed by regular monitoring of blood pressure and thoracic aorta analysis using staining and electron microscopy. Intriguingly, our results indicated that both RSG and GW9662 appeared to potently counteract CIH-induced hypertension. In silico study suggested that GW9662's antihypertensive effect might mediated through angiotensin II receptor type 1 (AGTR1). Our findings provide insights into the mechanisms of OSA-related hypertension and propose novel therapeutic targets.
Collapse
MESH Headings
- Animals
- PPAR gamma/agonists
- PPAR gamma/metabolism
- Hypertension/physiopathology
- Hypertension/drug therapy
- Hypertension/metabolism
- Rosiglitazone/pharmacology
- Disease Models, Animal
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Male
- Hypoxia/complications
- Hypoxia/drug therapy
- Anilides/pharmacology
- Rats, Sprague-Dawley
- Blood Pressure/drug effects
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/pathology
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/drug effects
- Chronic Disease
- Signal Transduction
- Sleep Apnea, Obstructive/drug therapy
- Sleep Apnea, Obstructive/physiopathology
- Sleep Apnea, Obstructive/complications
- Sleep Apnea, Obstructive/metabolism
- Molecular Docking Simulation
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Ningzhi Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Feng Wei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Sisi Ning
- Department of Cardiology, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital, Shanghai, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hongtao Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zhifeng Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Minna Tang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yongqiao Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jiaxin Gong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Zhaoqiang Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| |
Collapse
|
7
|
Vázquez-Carrera M, Wahli W. PPARs as Key Transcription Regulators at the Crossroads of Metabolism and Inflammation. Int J Mol Sci 2024; 25:4467. [PMID: 38674052 PMCID: PMC11050553 DOI: 10.3390/ijms25084467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The metabolic and immune systems are complex networks of organs, cells, and proteins that are involved in the extraction of energy from food; this is to run complex cellular processes and defend the body against infections while protecting its own tissues, respectively [...].
Collapse
Affiliation(s)
- Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, 08028 Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 28029 Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
- Toxalim, INRAE UMR 1331, F-31300 Toulouse, France
| |
Collapse
|
8
|
Krumm L, Pozner T, Zagha N, Coras R, Arnold P, Tsaktanis T, Scherpelz K, Davis MY, Kaindl J, Stolzer I, Süß P, Khundadze M, Hübner CA, Riemenschneider MJ, Baets J, Günther C, Jayadev S, Rothhammer V, Krach F, Winkler J, Winner B, Regensburger M. Neuroinflammatory disease signatures in SPG11-related hereditary spastic paraplegia patients. Acta Neuropathol 2024; 147:28. [PMID: 38305941 PMCID: PMC10837238 DOI: 10.1007/s00401-023-02675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL). We delineate a previously unknown role of innate immunity in SPG11-HSP. Neuropathological analysis of SPG11-HSP patient brain tissue revealed profound microgliosis in areas of neurodegeneration, downregulation of homeostatic microglial markers and cell-intrinsic accumulation of lipids and lipofuscin in IBA1+ cells. In a larger cohort of SPG11-HSP patients, the ratio of peripheral classical and intermediate monocytes was increased, along with increased serum levels of IL-6 that correlated with disease severity. Stimulation of patient-specific iMGLs with IFNγ led to increased phagocytic activity compared to control iMGL as well as increased upregulation and release of proinflammatory cytokines and chemokines, such as CXCL10. On a molecular basis, we identified increased STAT1 phosphorylation as mechanism connecting IFNγ-mediated immune hyperactivation and SPG11 loss of function. STAT1 expression was increased both in human postmortem brain tissue and in an Spg11-/- mouse model. Application of an STAT1 inhibitor decreased CXCL10 production in SPG11 iMGL and rescued their toxic effect on SPG11 neurons. Our data establish neuroinflammation as a novel disease mechanism in SPG11-HSP patients and constitute the first description of myeloid cell/ microglia activation in human SPG11-HSP. IFNγ/ STAT1-mediated neurotoxic effects of hyperreactive microglia upon SPG11 loss of function indicate that immunomodulation strategies may slow down disease progression.
Collapse
Affiliation(s)
- Laura Krumm
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Naime Zagha
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Kathryn Scherpelz
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marie Y Davis
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
- VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Süß
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Kussmaulallee 4, 91054, Erlangen, Germany
| | - Suman Jayadev
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Kussmaulallee 4, 91054, Erlangen, Germany.
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
9
|
Saini AK, Anil N, Vijay AN, Mangla B, Javed S, Kumar P, Ahsan W. Recent Advances in the Treatment Strategies of Friedreich's Ataxia: A Review of Potential Drug Candidates and their Underlying Mechanisms. Curr Pharm Des 2024; 30:1472-1489. [PMID: 38638052 DOI: 10.2174/0113816128288707240404051856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Friedreich's Ataxia (FRDA) is a rare hereditary neurodegenerative disorder characterized by progressive ataxia, cardiomyopathy, and diabetes. The disease is caused by a deficiency of frataxin, a mitochondrial protein involved in iron-sulfur cluster synthesis and iron metabolism. OBJECTIVE This review aims to summarize recent advances in the development of treatment strategies for FRDA, with a focus on potential drug candidates and their mechanisms of action. METHODS A comprehensive literature search was conducted using various authentic scientific databases to identify studies published in the last decade that investigated potential treatment strategies for FRDA. The search terms used included "Friedreich's ataxia", "treatment", "drug candidates", and "mechanisms of action". RESULTS To date, only one drug got approval from US-FDA in the year 2023; however, significant developments were achieved in FRDA-related research focusing on diverse therapeutic interventions that could potentially alleviate the symptoms of this disease. Several promising drug candidates have been identified for the treatment of FRDA, which target various aspects of frataxin deficiency and aim to restore frataxin levels, reduce oxidative stress, and improve mitochondrial function. Clinical trials have shown varying degrees of success, with some drugs demonstrating significant improvements in neurological function and quality of life in FRDA patients. CONCLUSION While there has been significant progress in the development of treatment strategies for FRDA, further research is needed to optimize these approaches and identify the most effective and safe treatment options for patients. The integration of multiple therapeutic strategies may be necessary to achieve the best outcomes in FRDA management.
Collapse
Affiliation(s)
- Aman Kumar Saini
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Neha Anil
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Ardra N Vijay
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, P. Box No. 114, Saudi Arabia
| | - Pankaj Kumar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, P. Box No. 114, Saudi Arabia
| |
Collapse
|
10
|
Ceravolo G, Zhelcheska K, Squadrito V, Pellerin D, Gitto E, Hartley L, Houlden H. Update on leukodystrophies and developing trials. J Neurol 2024; 271:593-605. [PMID: 37755460 PMCID: PMC10770198 DOI: 10.1007/s00415-023-11996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/28/2023]
Abstract
Leukodystrophies are a heterogeneous group of rare genetic disorders primarily affecting the white matter of the central nervous system. These conditions can present a diagnostic challenge, requiring a comprehensive approach that combines clinical evaluation, neuroimaging, metabolic testing, and genetic testing. While MRI is the main tool for diagnosis, advances in molecular diagnostics, particularly whole-exome sequencing, have significantly improved the diagnostic yield. Timely and accurate diagnosis is crucial to guide symptomatic treatment and assess eligibility to participate in clinical trials. Despite no specific cure being available for most leukodystrophies, gene therapy is emerging as a potential treatment avenue, rapidly advancing the therapeutic prospects in leukodystrophies. This review will explore diagnostic and therapeutic strategies for leukodystrophies, with particular emphasis on new trials.
Collapse
Affiliation(s)
- Giorgia Ceravolo
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK.
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Kristina Zhelcheska
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK
| | - Violetta Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - David Pellerin
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK
| | - Eloisa Gitto
- Neonatal and Paediatric Intensive Care Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Henry Houlden
- Department of Neuromuscular Disorders, Institute of Neurology, University College London (UCL), London, UK
| |
Collapse
|
11
|
de la Monte SM. Conquering Insulin Network Dysfunctions in Alzheimer's Disease: Where Are We Today? J Alzheimers Dis 2024; 101:S317-S343. [PMID: 39422949 DOI: 10.3233/jad-240069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Functional impairments in the brain's insulin and insulin-like growth factor (IGF) signal transduction networks are recognized mediators of dysregulated energy metabolism, a major driver of the Alzheimer's disease (AD) neurodegeneration cascade. AD-associated insulin-deficient and insulin-resistant states mimic those of diabetes mellitus and affect all cell types in the brain. Besides accounting for abundant amyloid-β and hyperphosphorylated tau lesions in AD, insulin/IGF pathway dysfunctions cause cortical atrophy, loss of synaptic plasticity, white matter myelin/oligodendrocyte degeneration, astrocyte and microglial neuroinflammation and oxidative stress, deficits in energy metabolism, mitochondrial dysfunction, and microvascular disease. These same neuropathological processes have been linked to cognitive impairment in type 2 diabetes mellitus, Parkinson's disease, and vascular dementia. Strategies to address metabolic mediators of cognitive impairment have been borrowed from diabetes and other insulin-resistant diseases and leveraged on preclinical AD model data. The repurposing of diabetes drugs led to clinical trials with intranasal insulin, followed by insulin sensitizers including metformin and peroxisome-proliferator-activated receptor agonists, and then incretin mimetics primarily targeting GLP-1 receptors. In addition, other glucose-lowering agents have been tested for their efficacy in preventing cognitive declines. The strengths and limitations of these approaches are discussed. The main conclusion of this review is that we have now arrived at a stage in which it is time to address long-term deficits in trophic factor availability and receptor responsiveness, signaling abnormalities that extend beyond insulin and include IGFs and interconnected pathways, and the need for multi-pronged rather than single-pronged therapeutic targeting to remediate AD and other forms of neurodegeneration.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
12
|
Musokhranova U, Grau C, Vergara C, Rodríguez-Pascau L, Xiol C, Castells AA, Alcántara S, Rodríguez-Pombo P, Pizcueta P, Martinell M, García-Cazorla A, Oyarzábal A. Mitochondrial modulation with leriglitazone as a potential treatment for Rett syndrome. J Transl Med 2023; 21:756. [PMID: 37884937 PMCID: PMC10601217 DOI: 10.1186/s12967-023-04622-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Rett syndrome is a neuropediatric disease occurring due to mutations in MECP2 and characterized by a regression in the neuronal development following a normal postnatal growth, which results in the loss of acquired capabilities such as speech or purposeful usage of hands. While altered neurotransmission and brain development are the center of its pathophysiology, alterations in mitochondrial performance have been previously outlined, shaping it as an attractive target for the disease treatment. METHODS We have thoroughly described mitochondrial performance in two Rett models, patients' primary fibroblasts and female Mecp2tm1.1Bird-/+ mice brain, discriminating between different brain areas. The characterization was made according to their bioenergetics function, oxidative stress, network dynamics or ultrastructure. Building on that, we have studied the effect of leriglitazone, a PPARγ agonist, in the modulation of mitochondrial performance. For that, we treated Rett female mice with 75 mg/kg/day leriglitazone from weaning until sacrifice at 7 months, studying both the mitochondrial performance changes and their consequences on the mice phenotype. Finally, we studied its effect on neuroinflammation based on the presence of reactive glia by immunohistochemistry and through a cytokine panel. RESULTS We have described mitochondrial alterations in Rett fibroblasts regarding both shape and bioenergetic functions, as they displayed less interconnected and shorter mitochondria and reduced ATP production along with increased oxidative stress. The bioenergetic alterations were recalled in Rett mice models, being especially significant in cerebellum, already detectable in pre-symptomatic stages. Treatment with leriglitazone recovered the bioenergetic alterations both in Rett fibroblasts and female mice and exerted an anti-inflammatory effect in the latest, resulting in the amelioration of the mice phenotype both in general condition and exploratory activity. CONCLUSIONS Our studies confirm the mitochondrial dysfunction in Rett syndrome, setting the differences through brain areas and disease stages. Its modulation through leriglitazone is a potential treatment for this disorder, along with other diseases with mitochondrial involvement. This work constitutes the preclinical necessary evidence to lead to a clinical trial.
Collapse
Affiliation(s)
- Uliana Musokhranova
- Synaptic Metabolism and Personalized Therapies Lab, Department of Neurology and MetabERN, Institut de Recerca Sant Joan de Déu, 39-57 Santa Rosa Street, Esplugues de Llobregat , 08950, Barcelona, Spain
| | - Cristina Grau
- Synaptic Metabolism and Personalized Therapies Lab, Department of Neurology and MetabERN, Institut de Recerca Sant Joan de Déu, 39-57 Santa Rosa Street, Esplugues de Llobregat , 08950, Barcelona, Spain
| | | | | | - Clara Xiol
- Department of Medical Genetics, Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Alba A Castells
- Neural Development Lab, Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Soledad Alcántara
- Neural Development Lab, Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Rodríguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, CBM-CSIC, Departamento de Biología Molecular, Institute for Molecular Biology-IUBM, Universidad Autónoma Madrid, IDIPAZ, Madrid, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | | | - Marc Martinell
- Minoryx Therapeutics BE S.A., Gosselies, Charleroi, Belgium
- Minoryx Therapeutics S.L., Barcelona, Spain
| | - Angels García-Cazorla
- Synaptic Metabolism and Personalized Therapies Lab, Department of Neurology and MetabERN, Institut de Recerca Sant Joan de Déu, 39-57 Santa Rosa Street, Esplugues de Llobregat , 08950, Barcelona, Spain
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain
| | - Alfonso Oyarzábal
- Synaptic Metabolism and Personalized Therapies Lab, Department of Neurology and MetabERN, Institut de Recerca Sant Joan de Déu, 39-57 Santa Rosa Street, Esplugues de Llobregat , 08950, Barcelona, Spain.
- CIBERER-Spanish Biomedical Research Centre in Rare Diseases, Madrid, Spain.
| |
Collapse
|
13
|
Vacca V, Rossi C, Pieroni L, De Angelis F, Giacovazzo G, Cicalini I, Ciavardelli D, Pavone F, Coccurello R, Marinelli S. Sex-specific adipose tissue's dynamic role in metabolic and inflammatory response following peripheral nerve injury. iScience 2023; 26:107914. [PMID: 37817933 PMCID: PMC10561049 DOI: 10.1016/j.isci.2023.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Epidemiological data and research highlight increased neuropathy and chronic pain prevalence among females, spanning metabolic and normometabolic contexts, including murine models. Prior findings demonstrated diverse immune and neuroimmune responses between genders in neuropathic pain (NeP), alongside distinct protein expression in sciatic nerves. This study unveils adipose tissue's (AT) role in sex-specific NeP responses after peripheral nerve injury. Metabolic assessments, metabolomics, energy expenditure evaluations, AT proteomic analyses, and adipokine mobilization depict distinct AT reactions to nerve damage. Females exhibit altered lipolysis, fatty acid oxidation, heightened energy expenditure, and augmented steroids secretion affecting glucose and insulin metabolism. Conversely, male neuropathy prompts glycolysis, reduced energy expenditure, and lowered unsaturated fatty acid levels. Males' AT promotes regenerative molecules, oxidative stress defense, and stimulates peroxisome proliferator-activated receptors (PPAR-γ) and adiponectin. This study underscores AT's pivotal role in regulating gender-specific inflammatory and metabolic responses to nerve injuries, shedding light on female NeP susceptibility determinants.
Collapse
Affiliation(s)
- Valentina Vacca
- National Council of Research - Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| | - Claudia Rossi
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luisa Pieroni
- Departmental Faculty of Medicine, UniCamillus - Saint Camillus International University of Health Sciences, 00131 Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Federica De Angelis
- National Council of Research - Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Giacomo Giacovazzo
- European Center for Brain Research/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
- Università degli studi di Teramo (UniTE) - Facoltà di Medicina Veterinaria, 64100 Teramo, Italy
| | - Ilaria Cicalini
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Domenico Ciavardelli
- Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
- School of Medicine, University Kore of Enna, Enna, Italy
| | - Flaminia Pavone
- National Council of Research - Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| | - Roberto Coccurello
- European Center for Brain Research/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
- Institute for Complex Systems (ISC), National Council of Research (CNR), 00185 Rome, Italy
| | - Sara Marinelli
- National Council of Research - Institute of Biochemistry and Cell Biology, Monterotondo (RM), Italy
| |
Collapse
|
14
|
Ma Y, Jiang Q, Yang B, Hu X, Shen G, Shen W, Xu J. Platelet mitochondria, a potent immune mediator in neurological diseases. Front Physiol 2023; 14:1210509. [PMID: 37719457 PMCID: PMC10502307 DOI: 10.3389/fphys.2023.1210509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Dysfunction of the immune response is regarded as a prominent feature of neurological diseases, including neurodegenerative diseases, malignant tumors, acute neurotraumatic insult, and cerebral ischemic/hemorrhagic diseases. Platelets play a fundamental role in normal hemostasis and thrombosis. Beyond those normal functions, platelets are hyperactivated and contribute crucially to inflammation and immune responses in the central nervous system (CNS). Mitochondria are pivotal organelles in platelets and are responsible for generating most of the ATP that is used for platelet activation and aggregation (clumping). Notably, platelet mitochondria show marked morphological and functional alterations under heightened inflammatory/oxidative stimulation. Mitochondrial dysfunction not only leads to platelet damage and apoptosis but also further aggravates immune responses. Improving mitochondrial function is hopefully an effective strategy for treating neurological diseases. In this review, the authors discuss the immunomodulatory roles of platelet-derived mitochondria (PLT-mitos) in neurological diseases and summarize the neuroprotective effects of platelet mitochondria transplantation.
Collapse
Affiliation(s)
- Yan Ma
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Yang
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Hu
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Shen
- Transfusion Research Department, Wuhan Blood Center, Wuhan, Hubei, China
- Institute of Blood Transfusion of Hubei Province, Wuhan Blood Center, Wuhan, Hubei, China
| | - Wei Shen
- Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Xu
- Wuhan Blood Center, Wuhan, Hubei, China
| |
Collapse
|
15
|
Garcia-Baos A, Pastor A, Gallego-Landin I, de la Torre R, Sanz F, Valverde O. The role of PPAR-γ in memory deficits induced by prenatal and lactation alcohol exposure in mice. Mol Psychiatry 2023; 28:3373-3383. [PMID: 37491462 DOI: 10.1038/s41380-023-02191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Patients diagnosed with fetal alcohol spectrum disorder (FASD) show persistent cognitive disabilities, including memory deficits. However, the neurobiological substrates underlying these deficits remain unclear. Here, we show that prenatal and lactation alcohol exposure (PLAE) in mice induces FASD-like memory impairments. This is accompanied by a reduction of N-acylethanolamines (NAEs) and peroxisome proliferator-activated receptor gamma (PPAR-γ) in the hippocampus specifically in a childhood-like period (at post-natal day (PD) 25). To determine their role in memory deficits, two pharmacological approaches were performed during this specific period of early life. Thus, memory performance was tested after the repeated administration (from PD25 to PD34) of: i) URB597, to increase NAEs, with GW9662, a PPAR-γ antagonist; ii) pioglitazone, a PPAR-γ agonist. We observed that URB597 suppresses PLAE-induced memory deficits through a PPAR-γ dependent mechanism, since its effects are prevented by GW9662. Direct PPAR-γ activation, using pioglitazone, also ameliorates memory impairments. Lastly, to further investigate the region and cellular specificity, we demonstrate that an early overexpression of PPAR-γ, by means of a viral vector, in hippocampal astrocytes mitigates memory deficits induced by PLAE. Together, our data reveal that disruptions of PPAR-γ signaling during neurodevelopment contribute to PLAE-induced memory dysfunction. In turn, PPAR-γ activation during a childhood-like period is a promising therapeutic approach for memory deficits in the context of early alcohol exposure. Thus, these findings contribute to the gaining insight into the mechanisms that might underlie memory impairments in FASD patients.
Collapse
Affiliation(s)
- Alba Garcia-Baos
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Antoni Pastor
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Ines Gallego-Landin
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rafael de la Torre
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Ferran Sanz
- Research Program on Biomedical Informatics (GRIB), IMIM-Hospital del Mar Research Institute, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|