1
|
Mpakosi A, Sokou R, Theodoraki M, Iacovidou N, Cholevas V, Kaliouli-Antonopoulou C. Deciphering the Role of Maternal Microchimerism in Offspring Autoimmunity: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1457. [PMID: 39336498 PMCID: PMC11433734 DOI: 10.3390/medicina60091457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Feto-maternal microchimerism is the bidirectional transfer of cells through the placenta during pregnancy that can affect the health of both the mother and the offspring, even in childhood or adulthood. However, microchimerism seems to have different consequences in the mother, who already has a developed immune system, than in the fetus, which is vulnerable with immature defense mechanisms. Studies have shown that the presence of fetal microchimeric cells in the mother can be associated with reduced fetal growth, pre-eclampsia, miscarriage, premature birth, and the risk of autoimmune disease development in the future. However, some studies report that they may also play a positive role in the healing of maternal tissue, in cancer and cardiovascular disease. There are few studies in the literature regarding the role of maternal microchimeric cells in fetal autoimmunity. Even fewer have examined their association with the potential triggering of autoimmune diseases later in the offspring's life. The objectives of this review were to elucidate the mechanisms underlying the potential association between maternal cells and autoimmune conditions in offspring. Based on our findings, several hypotheses have been proposed regarding possible mechanisms by which maternal cells may trigger autoimmunity. In Type 1 diabetes, maternal cells have been implicated in either attacking the offspring's pancreatic β-cells, producing insulin, differentiating into endocrine and exocrine cells, or serving as markers of tissue damage. Additionally, several potential mechanisms have been suggested for the onset of neonatal lupus erythematosus. In this context, maternal cells may induce a graft-versus-host or host-versus-graft reaction in the offspring, function as effectors within tissues, or contribute to tissue healing. These cells have also been found to participate in inflammation and fibrosis processes, as well as differentiate into myocardial cells, potentially triggering an immune response. Moreover, the involvement of maternal microchimeric cells has been supported in conditions such as juvenile idiopathic inflammatory myopathies, Sjögren's syndrome, systemic sclerosis, biliary atresia, and rheumatoid arthritis. Conversely, no association has been found between maternal cells and celiac disease in offspring. These findings suggest that the role of maternal cells in autoimmunity remains a controversial topic that warrants further investigation.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | | | | |
Collapse
|
2
|
Taheri M, Tehrani HA, Dehghani S, Alibolandi M, Arefian E, Ramezani M. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off-the-shelf versatile tumor delivery vehicle. Med Res Rev 2024; 44:1596-1661. [PMID: 38299924 DOI: 10.1002/med.22023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Targeting actionable mutations in oncogene-driven cancers and the evolution of immuno-oncology are the two prominent revolutions that have influenced cancer treatment paradigms and caused the emergence of precision oncology. However, intertumoral and intratumoral heterogeneity are the main challenges in both fields of precision cancer treatment. In other words, finding a universal marker or pathway in patients suffering from a particular type of cancer is challenging. Therefore, targeting a single hallmark or pathway with a single targeted therapeutic will not be efficient for fighting against tumor heterogeneity. Mesenchymal stem cells (MSCs) possess favorable characteristics for cellular therapy, including their hypoimmune nature, inherent tumor-tropism property, straightforward isolation, and multilineage differentiation potential. MSCs can be loaded with various chemotherapeutics and oncolytic viruses. The combination of these intrinsic features with the possibility of genetic manipulation makes them a versatile tumor delivery vehicle that can be used for in vivo selective tumor delivery of various chemotherapeutic and biological therapeutics. MSCs can be used as biofactory for the local production of chemical or biological anticancer agents at the tumor site. MSC-mediated immunotherapy could facilitate the sustained release of immunotherapeutic agents specifically at the tumor site, and allow for the achievement of therapeutic concentrations without the need for repetitive systemic administration of high therapeutic doses. Despite the enthusiasm evoked by preclinical studies that used MSC in various cancer therapy approaches, the translation of MSCs into clinical applications has faced serious challenges. This manuscript, with a critical viewpoint, reviewed the preclinical and clinical studies that have evaluated MSCs as a selective tumor delivery tool in various cancer therapy approaches, including gene therapy, immunotherapy, and chemotherapy. Then, the novel nanotechnology and bioengineering approaches that can improve the potency of MSC for tumor targeting and overcoming challenges related to their low localization at the tumor sites are discussed.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Xie W, Luo T, Ma Z, Xue S, Jia X, Yang T, Song Z. Tumor Necrosis Factor Alpha Preconditioned Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Enhance the Inhibition of Necroptosis of Acinar cells in Severe Acute Pancreatitis. Tissue Eng Part A 2023; 29:607-619. [PMID: 37565286 DOI: 10.1089/ten.tea.2023.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a common abdominal emergency with a high mortality rate and a lack of effective therapeutic options. Although mesenchymal stem cell (MSC) transplantation is a potential treatment for SAP, the mechanism remains unclear. It has been suggested that MSCs may act mainly through paracrine effects; therefore, we aimed to demonstrate the therapeutic efficacy of extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (UCMSCs) for SAP. Na-taurocholate was used to induce a rat SAP model through retrograde injection into the common biliopancreatic duct. After 72 h of EVs transplantation, pancreatic pathological damage was alleviated, along with a decrease in serum amylase activity and pro-inflammatory cytokine levels. Interestingly, when UCMSCs were preconditioned with 10 ng/mL tumor necrosis factor alpha (TNF-α) for 48 h, the obtained EVs (named TNF-α-EVs) performed an enhanced efficacy. Furthermore, both animal and cellular experiments showed that TNF-α-EVs alleviated the necroptosis of acinar cells of SAP through RIPK3/MLKL axis. In conclusion, our study demonstrated that TNF-α-EVs were able to enhance the therapeutic effect on SAP by inhibiting necroptosis compared to normal EVs. This study heralds that TNF-α-EVs may be a promising therapeutic approach for SAP in the future.
Collapse
Affiliation(s)
- Wangcheng Xie
- Department of General Surgery and Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingyi Luo
- Department of General Surgery and Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaobo Xue
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuyang Jia
- Department of Metabolic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery and Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenshun Song
- Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Huang S, Cao Y, Wang R, Liu H, Wang T, Yang S. Feasibility of 125I brachytherapy combined with arterial infusion chemotherapy in patients with advanced pancreatic cancer. Medicine (Baltimore) 2023; 102:e35033. [PMID: 37933058 PMCID: PMC10627645 DOI: 10.1097/md.0000000000035033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/10/2023] [Indexed: 11/08/2023] Open
Abstract
To evaluation the feasibility of Iodine-125 (¹²5I) brachytherapy combined with arterial infusion chemotherapy in patients with advanced pancreatic cancer. A total of 72 cases with Stage III and IV were retrospectively reviewed. 23 cases receiving 125I brachytherapy were classified as Group A. 27 cases receiving arterial infusion chemotherapy (gemcitabine + cisplatin, GP) were classified as Group B and 22 cases receiving 125I brachytherapy combined with arterial infusion chemotherapy (GP) were classified as Group C. The evaluated indications were local control rate, survival rate, carbohydrate antigen 19-9, pain relief, and Karnofsky physical scores. Analysis of Variancep, Pearson chi-square test and Kaplan-Meier curves were used for analysis. The local control rate of group A and group C was significantly higher than group B (P < .001). Pearson chi-square test showed statistical difference of the 3 groups (χ2 = 12.969, P = .044). The median survival of group A,B and C was 9 months, 6 months and 13 months, respectively. The survival time of group C was significantly higher than group B (χ2 = 5.403, P = .020). The Log rank test showed statistical difference in the survival curve of the 3 groups (χ2 = 6.501, P = .039). The difference of carbohydrate antigen 19-9 decline percentage between group B and C group was statistically significant (χ2 = 5.959, P = .015). Patients in group A and group C relieved form pain after treatment with statistically significant (P < .001). Pain relief was much more effective in patients who received 125I brachytherapy. Karnofsky physical scores after treatment were statistically higher than those before treatment in each group (P < .001). 125I brachytherapy maybe one of the effective, safe and feasible alternative treatment of advanced pancreatic cancer. ¹²5I brachytherapy combined with arterial infusion chemotherapy was effective in the treatment of advanced pancreatic cancer.
Collapse
Affiliation(s)
- Shujing Huang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yanqing Cao
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Rui Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Huimin Liu
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ting Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shu Yang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Kumar L, Kumar S, Sandeep K, Patel SKS. Therapeutic Approaches in Pancreatic Cancer: Recent Updates. Biomedicines 2023; 11:1611. [PMID: 37371705 DOI: 10.3390/biomedicines11061611] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer is a significant challenge for effective treatment due to its complex mechanism, different progressing stages, and lack of adequate procedures for screening and identification. Pancreatic cancer is typically identified in its advanced progression phase with a low survival of ~5 years. Among cancers, pancreatic cancer is also considered a high mortality-causing casualty over other accidental or disease-based mortality, and it is ranked seventh among all mortality-associated cancers globally. Henceforth, developing diagnostic procedures for its early detection, understanding pancreatic cancer-linked mechanisms, and various therapeutic strategies are crucial. This review describes the recent development in pancreatic cancer progression, mechanisms, and therapeutic approaches, including molecular techniques and biomedicines for effectively treating cancer.
Collapse
Affiliation(s)
- Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, India
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Kumar Sandeep
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|