1
|
Wang ZZ, Wang K, Xu LF, Su C, Gong JS, Shi JS, Ma XD, Xie N, Qian JY. Unlocking the Potential of Collagenases: Structures, Functions, and Emerging Therapeutic Horizons. BIODESIGN RESEARCH 2024; 6:0050. [PMID: 39381623 PMCID: PMC11458858 DOI: 10.34133/bdr.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 10/10/2024] Open
Abstract
Collagenases, a class of enzymes that are specifically responsible for collagen degradation, have garnered substantial attention because of their pivotal roles in tissue repair, remodeling, and medical interventions. This comprehensive review investigates the diversity, structures, and mechanisms of collagenases and highlights their therapeutic potential. First, it provides an overview of the biochemical properties of collagen and highlights its importance in extracellular matrix function. Subsequently, it meticulously analyzes the sources of collagenases and their applications in tissue engineering and food processing. Notably, this review emphasizes the predominant role played by microbial collagenases in commercial settings while discussing their production and screening methods. Furthermore, this study elucidates the methodology employed for determining collagenase activity and underscores the importance of an accurate evaluation for both research purposes and clinical applications. Finally, this review highlights the future research prospects for collagenases, with a particular focus on promoting wound healing and treating scar tissue formation and fibrotic diseases.
Collapse
Affiliation(s)
- Zhen-Zhen Wang
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Kang Wang
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Ling-Feng Xu
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Xu-Dong Ma
- Cytori Therapeutics LLC., Shanghai 201802, PR China
| | - Nan Xie
- Cytori Therapeutics LLC., Shanghai 201802, PR China
| | - Jian-Ying Qian
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
2
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
3
|
Mohammadi S, Ghasemi F, Alavi G SA, Alemzadeh E. Investigate the in vitro biocompatibility, biodegradation, cytotoxicity, and differentiation potential of 3-D gelatin-nanocellulose composite scaffolds loaded with nanohydroxyapatite and simvastatin. Tissue Cell 2024; 91:102536. [PMID: 39236521 DOI: 10.1016/j.tice.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Bone tissue engineering has been proposed as a promising solution for healing of bone fractures. An important aspect of bone tissue engineering is the implantable scaffolds that participate in the regeneration and repair of bone tissue. In this study, the composite scaffolds of gelatin- nanocellulose loaded with nanohydroxyapatite and simvastatin (as the osteoinductive component) were fabricated using freeze- drying method. Scaffolds were characterized in terms of morphology, mechanical, biodegradability, water absorption capacity, and simvastatin release characteristics. Also, the biocompatibility and differentiation potential of the scaffolds were evaluated on human bone marrow-derived mesenchymal stem cells using the MTT assay and alizarin red staining, respectively. The simvastatin loaded scaffolds showed a sustained release profile in vitro up to 216 h. The results of BMSCs differentiation by alizarin red staining showed significant differences between the simvastatin loaded group and other groups. Moreover, the results of MTT assay verified cytocompatibility and non-toxicity of the scaffolds. Therefore, the gelatin-nano cellulose composite scaffolds loaded with hydroxyapatite and simvastatin may be considered promising for use in bone tissue engineering.
Collapse
Affiliation(s)
- Soroush Mohammadi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Ghasemi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Esmat Alemzadeh
- Infectious Diseases Research Center, Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
4
|
Vijayakumar N, Sanjay AV, Al-Ghanim KA, Nicoletti M, Baskar G, Kumar R, Govindarajan M. Development of Biodegradable Bioplastics with Sericin and Gelatin from Silk Cocoons and Fish Waste. TOXICS 2024; 12:453. [PMID: 39058105 PMCID: PMC11281016 DOI: 10.3390/toxics12070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
The bioplastics sector promotes environmentally friendly means of cutting down on the usage of fossil fuels, plastic waste, and environmental pollution. Plastic contamination has detrimental effects on both ecological systems and the global food supply. The approach we present here to resolve this issue involves the integration of sericin and gelatin, obtained from cocoon and fish waste, respectively, with nano-reinforced cellulose crystals, to develop a biodegradable and compostable plastic material. The use of cocoon and fish wastes for the extraction of sericin and gelatin presents an environmentally beneficial approach since it contributes to waste reduction. The sericin level found in silk cocoon waste was determined to be 28.08%, and the gelatin amount in fish waste was measured to be 58.25%. The inclusion of sericin and gelatin in bioplastics was accompanied by the incorporation of glycerol, vinegar, starch, sodium hydroxide, and other coloring agents. Fourier transform infrared (FTIR) examination of bioplastics revealed the presence of functional groups that corresponded to the sericin and gelatin components. The tensile strength of the bioplastic material was measured to be 27.64 MPa/psi, while its thickness varied between 0.072 and 0.316 mm. The results of burial experiments indicated that the bioplastic material had a degradation rate of 85% after 14 days. The invention exhibits potential as a viable alternative for packaging, containment, and disposable plastic materials. The use of this sustainable approach is recommended for the extraction of sericin and gelatin from silk cocoons and fish waste, with the intention of using them as raw materials for bioplastic production.
Collapse
Affiliation(s)
- Natesan Vijayakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India; (N.V.); (A.V.S.)
| | - Aathiyur Velumani Sanjay
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India; (N.V.); (A.V.S.)
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Marcello Nicoletti
- Department of Environmental Biology, In Unam Sapientiam, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph’s College of Engineering, Chennai 600119, Tamil Nadu, India;
- School of Engineering, Lebanese American University, Byblos 1102 2801, Lebanon
| | - Ranvijay Kumar
- University Centre for Research and Development, Department of Mechanical Engineering, Chandigarh University, Mohali 140413, Punjab, India;
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612001, Tamil Nadu, India
| |
Collapse
|
5
|
Râpă M, Gaidau C, Stefan LM, Lazea-Stoyanova A, Berechet MD, Iosageanu A, Matei E, Jankauskaitė V, Predescu C, Valeika V, Balčiūnaitienė A, Cupara S. Donkey Gelatin and Keratin Nanofibers Loaded with Antioxidant Agents for Wound Healing Dressings. Gels 2024; 10:391. [PMID: 38920937 PMCID: PMC11202978 DOI: 10.3390/gels10060391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Acute and chronic wounds present a significant healthcare challenge, requiring innovative solutions for effective treatment. The exploitation of natural by-products with advanced cell regeneration potential and plant-based materials, which possess bioactive properties, is an innovative topic in wound management. This study investigates the potential of donkey gelatin and keratin for blending with natural bioactive extracts such as sumac, curcumin, and oak acorn to fabricate antioxidant and antimicrobial nanofibers with accelerated wound healing processes. The fabricated nanofibers possess good in vitro biocompatibility, except for the sumac-based donkey nanofibers, where cell viability significantly dropped to 56.25% (p < 0.05 compared to non-treated cells). The nanofiber dimensions showed structural similarities to human extracellular matrix components, providing an ideal microenvironment for tissue regeneration. The donkey nanofiber-based sumac and curcumin extracts presented a higher dissolution in the first 10 min (74% and 72%). Curcumin extract showed similar antimicrobial and antifungal performances to rivanol, while acorn and sumac extracts demonstrated similar values to each other. In vitro tests performed on murine fibroblast cells demonstrated high migration rates of 89% and 85% after 24 h in the case of acorn and curcumin nanofibers, respectively, underscoring the potential of these nanofibers as versatile platforms for advanced wound care applications.
Collapse
Affiliation(s)
- Maria Râpă
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.)
| | - Carmen Gaidau
- The National Research & Development Institute for Textiles and Leather-Division Leather and Footwear Research Institute, 031251 Bucharest, Romania;
| | - Laura Mihaela Stefan
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (L.M.S.); (A.I.)
| | - Andrada Lazea-Stoyanova
- Low Temperature Plasma Department, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Mariana Daniela Berechet
- The National Research & Development Institute for Textiles and Leather-Division Leather and Footwear Research Institute, 031251 Bucharest, Romania;
| | - Andreea Iosageanu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania; (L.M.S.); (A.I.)
| | - Ecaterina Matei
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.)
| | - Virginija Jankauskaitė
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, 51424 Kaunas, Lithuania;
| | - Cristian Predescu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.)
| | - Virgilijus Valeika
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, 50254 Kaunas, Lithuania;
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Snezana Cupara
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| |
Collapse
|
6
|
Jang Y, Jang J, Kim BY, Song YS, Lee DY. Effect of Gelatin Content on Degradation Behavior of PLLA/Gelatin Hybrid Membranes. Tissue Eng Regen Med 2024; 21:557-569. [PMID: 38483778 PMCID: PMC11087404 DOI: 10.1007/s13770-024-00626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Poly(L-lactic acid) (PLLA) is a biodegradable polymer (BP) that replaces conventional petroleum-based polymers. The hydrophobicity of biodegradable PLLA periodontal barrier membrane in wet state can be solved by alloying it with natural polymers. Alloying PLLA with gelatin imparts wet mechanical properties, hydrophilicity, shrinkage, degradability and biocompatibility to the polymeric matrix. METHODS To investigate membrane performance in the wet state, PLLA/gelatin membranes were synthesized by varying the gelatin concentration from 0 to 80 wt%. The membrane was prepared by electrospinning. RESULTS At the macroscopic scale, PLLA containing gelatin can tune the wet mechanical properties, hydrophilicity, water uptake capacity (WUC), degradability and biocompatibility of PLLA/gelatin membranes. As the gelatin content increased from 0 to 80 wt%, the dry tensile strength of the membranes increased from 6.4 to 38.9 MPa and the dry strain at break decreased from 1.7 to 0.19. PLLA/gelatin membranes with a gelatin content exceeding 40% showed excellent biocompatibility and hydrophilicity. However, dimensional change (37.5% after 7 days of soaking), poor tensile stress in wet state (3.48 MPa) and rapid degradation rate (73.7%) were observed. The highest WUC, hydrophilicity, porosity, suitable mechanical properties and biocompatibility were observed for the PLLA/40% gelatin membrane. CONCLUSION PLLA/gelatin membranes with gelatin content less than 40% are suitable as barrier membranes for absorbable periodontal tissue regeneration due to their tunable wet mechanical properties, degradability, biocompatibility and lack of dimensional changes.
Collapse
Affiliation(s)
- Yunyoung Jang
- Department of Biomedical Engineering, Daelim University, 29 Imgok-ro, Dongan-gu, Anyang, 13916, South Korea
- Department of R&D Center, Renewmedical Co., Ltd., 28-7 Jeongju-ro, Bucheon, 14532, South Korea
| | - Juwoong Jang
- Department of R&D Center, Renewmedical Co., Ltd., 28-7 Jeongju-ro, Bucheon, 14532, South Korea
| | - Bae-Yeon Kim
- Department of Materials Science and Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, South Korea
| | - Yo-Seung Song
- Department of Materials Science and Engineering, Korea Aviation University, 76 Hanggongdaehak-ro, Dukyang-gu, Goyang, 10540, South Korea.
| | - Deuk Yong Lee
- Department of Biomedical Engineering, Daelim University, 29 Imgok-ro, Dongan-gu, Anyang, 13916, South Korea.
- Department of R&D Center, Hass Co., Ltd, 60 Haan-ro, Gwangmyeong, 14322, South Korea.
| |
Collapse
|
7
|
Rubini K, Menichetti A, Cassani MC, Montalti M, Bigi A, Boanini E. The Role of WO 3 Nanoparticles on the Properties of Gelatin Films. Gels 2024; 10:354. [PMID: 38920900 PMCID: PMC11203329 DOI: 10.3390/gels10060354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Gelatin films are very versatile materials whose properties can be tuned through functionalization with different systems. This work investigates the influence of WO3 nanoparticles on the swelling, barrier, mechanical, and photochromic properties of gelatin films. To this purpose, polyvinylpirrolidone (PVP)-stabilized WO3 nanoparticles were loaded on gelatin films at two different pH values, namely, 4 and 7. The values of swelling and solubility of functionalized films displayed a reduction of around 50% in comparison to those of pristine, unloaded films. In agreement, WO3 nanoparticles provoked a significant decrease in water vapor permeability, whereas the decrease in the values of elastic modulus (from about 2.0 to 0.7 MPa) and stress at break (from about 2.5 to 1.4 MPa) can be ascribed to the discontinuity created by the nanoparticles inside the films. The results of differential scanning calorimetry and X-ray diffraction analysis suggest that interaction of PVP with gelatin reduce gelatin renaturation. No significant differences were found between the samples prepared at pH 4 and 7, whereas crosslinking with glutaraldehyde greatly influenced the properties of gelatin films. Moreover, the incorporation of WO3 nanoparticles in gelatin films, especially in the absence of glutaraldehyde, conferred excellent photochromic properties, inducing the appearance of an intense blue color after a few seconds of light irradiation and providing good resistance to several irradiation cycles.
Collapse
Affiliation(s)
- Katia Rubini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
8
|
Lee DY. Gelatin Enhances the Wet Mechanical Properties of Poly(D,L-Lactic Acid) Membranes. Int J Mol Sci 2024; 25:5022. [PMID: 38732241 PMCID: PMC11084932 DOI: 10.3390/ijms25095022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Biodegradable (BP) poly(D,L-lactic acid) (PDLLA) membranes are widely used in tissue engineering. Here, we investigate the effects of varying concentrations of PDLLA/gelatin membranes electrospun in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP; C3H2F6O) solvent on their mechanical and physical properties as well as their biocompatibility. Regardless of the environmental conditions, increasing the gelatin content resulted in elevated stress and reduced strain at membrane failure. There was a remarkable difference in strain-to-failure between dry and wet PDLLA/gelatin membranes, with wet strains consistently higher than those of the dry membranes because of the hydrophilic nature of gelatin. A similar wet strain (εw = 2.7-3.0) was observed in PDLLA/gelatin membranes with a gelatin content between 10 and 40%. Both dry and wet stresses increased with increasing gelatin content. The dry stress on PDLLA/gelatin membranes (σd = 6.7-9.7 MPa) consistently exceeded the wet stress (σw = 4.5-8.6 MPa). The water uptake capacity (WUC) improved, increasing from 57% to 624% with the addition of 40% gelatin to PDLLA. PDLLA/gelatin hybrid membranes containing 10 to 20 wt% gelatin exhibited favorable wet mechanical properties (σw = 5.4-6.3 MPa; εw = 2.9-3.0); WUC (337-571%), degradability (11.4-20.2%), and excellent biocompatibility.
Collapse
Affiliation(s)
- Deuk Yong Lee
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea;
- Department of R&D Center, Hass Co., Ltd., Gwangmyeong 14322, Republic of Korea
| |
Collapse
|
9
|
Cao H, Wang J, Hao Z, Zhao D. Gelatin-based biomaterials and gelatin as an additive for chronic wound repair. Front Pharmacol 2024; 15:1398939. [PMID: 38751781 PMCID: PMC11094280 DOI: 10.3389/fphar.2024.1398939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Disturbing or disrupting the regular healing process of a skin wound may result in its progression to a chronic state. Chronic wounds often lead to increased infection because of their long healing time, malnutrition, and insufficient oxygen flow, subsequently affecting wound progression. Gelatin-the main structure of natural collagen-is widely used in biomedical fields because of its low cost, wide availability, biocompatibility, and degradability. However, gelatin may exhibit diverse tailored physical properties and poor antibacterial activity. Research on gelatin-based biomaterials has identified the challenges of improving gelatin's poor antibacterial properties and low mechanical properties. In chronic wounds, gelatin-based biomaterials can promote wound hemostasis, enhance peri-wound antibacterial and anti-inflammatory properties, and promote vascular and epithelial cell regeneration. In this article, we first introduce the natural process of wound healing. Second, we present the role of gelatin-based biomaterials and gelatin as an additive in wound healing. Finally, we present the future implications of gelatin-based biomaterials.
Collapse
Affiliation(s)
- Hongwei Cao
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingren Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Danyang Zhao
- Department of emergency Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Jin Y, Li D, Zheng X, Gao M, Wang W, Zhang X, Kang W, Zhang C, Wu S, Dai R, Zheng Z, Zhang R. A Novel Activatable Nanoradiosensitizer for Second Near-Infrared Fluorescence Imaging-Guided Safe-Dose Synergetic Chemo-Radiotherapy of Rheumatoid Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308905. [PMID: 38419379 PMCID: PMC11077689 DOI: 10.1002/advs.202308905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The precise theranostics of rheumatoid arthritis (RA) remains a formidable challenge in clinical practice. Exploring novel applications of contemporary therapeutic approaches like chemo-radiotherapy is promising as a highly effective strategy for RA. Herein, a novel activatable nanoradiosensitizer-40 (denoted as IRnR-40) is developed, based on encapsulating the clinically approved drugs cisplatin (DDP) and indocyanine green (ICG) within a gelatin shell to achieve second near-infrared fluorescence (NIR-II FL) imaging-guided safe-dose synergetic chemo-radiotherapy. The high concentration of matrix metalloproteinase-9 (MMP-9) in the RA microenvironment plays a pivotal role in triggering the responsive degradation of IRnR-40, leading to the rapid release of functional molecules DDP and ICG. The released ICG serves the dual purpose of illuminating the inflamed joints to facilitate accurate target volume delineation for guiding radiotherapy, as well as acting as a real-time reporter for quantifying the release of DDP to monitor efficacy. Meanwhile, the released DDP achieves highly effective synergistic chemotherapy and radiosensitization for RA via the dual reactive oxygen species (ROS)-mediated mitochondrial apoptotic pathway. To sum up, this activatable nanoradiosensitizer IRnR-40 is believed to be the first attempt to achieve efficient NIR-II FL imaging-guided safe-dose chemo-radiotherapy for RA, which provides a new paradigm for precise theranostics of refractory benign diseases.
Collapse
Affiliation(s)
- Yarong Jin
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Dongsheng Li
- Research Team of Molecular MedicineFirst Hospital of Shanxi Medical UniversityShanxi Medical UniversityTaiyuan030001China
| | - Xiaochun Zheng
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Mengting Gao
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Wenxuan Wang
- Department of OrthopedicsThird Hospital of Shanxi Medical University (Shanxi Bethune Hospital)Taiyuan030032China
| | - Xin Zhang
- Department of OrthopedicsThird Hospital of Shanxi Medical University (Shanxi Bethune Hospital)Taiyuan030032China
| | - Weiwei Kang
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Chongqing Zhang
- Department of RadiologyShanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University)Taiyuan030013China
| | - Shutong Wu
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Rong Dai
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Ziliang Zheng
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Department of OrthopedicsThird Hospital of Shanxi Medical University (Shanxi Bethune Hospital)Taiyuan030032China
| | - Ruiping Zhang
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| |
Collapse
|
11
|
Li D, Li Q, Xu T, Guo X, Tang H, Wang W, Zhang W, Zhang Y. Pro-vasculogenic Fibers by PDA-Mediated Surface Functionalization Using Cell-Free Fat Extract (CEFFE). Biomacromolecules 2024; 25:1550-1562. [PMID: 38411008 DOI: 10.1021/acs.biomac.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Formation of adequate vascular network within engineered three-dimensional (3D) tissue substitutes postimplantation remains a major challenge for the success of biomaterials-based tissue regeneration. To better mimic the in vivo angiogenic and vasculogenic processes, nowadays increasing attention is given to the strategy of functionalizing biomaterial scaffolds with multiple bioactive agents. Aimed at engineering electrospun biomimicking fibers with pro-vasculogenic capability, this study was proposed to functionalize electrospun fibers of polycaprolactone/gelatin (PCL/GT) by cell-free fat extract (CEFFE or FE), a newly emerging natural "cocktail" of cytokines and growth factors extracted from human adipose tissue. This was achieved by having the electrospun PCL/GT fiber surface coated with polydopamine (PDA) followed by PDA-mediated immobilization of FE to generate the pro-vasculogenic fibers of FE-PDA@PCL/GT. It was found that the PDA-coated fibrous mat of PCL/GT exhibited a high FE-loading efficiency (∼90%) and enabled the FE to be released in a highly sustained manner. The engineered FE-PDA@PCL/GT fibers possess improved cytocompatibility, as evidenced by the enhanced cellular proliferation, migration, and RNA and protein expressions (e.g., CD31, vWF, VE-cadherin) in the human umbilical vein endothelial cells (huvECs) used. Most importantly, the FE-PDA@PCL/GT fibrous scaffolds were found to enormously stimulate tube formation in vitro, microvascular development in the in ovo chick chorioallantoic membrane (CAM) assay, and vascularization of 3D construct in a rat subcutaneous embedding model. This study highlights the potential of currently engineered pro-vasculogenic fibers as a versatile platform for engineering vascularized biomaterial constructs for functional tissue regeneration.
Collapse
Affiliation(s)
- Donghong Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Qinglin Li
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tingting Xu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xuran Guo
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Han Tang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| |
Collapse
|
12
|
Yang Z, Zhang Q, Wu T, Li Q, Shi J, Gan J, Xiang S, Wang H, Hu C, Tang Y, Wang H. Thermally Healable Electrolyte-Electrode Interface for Sustainable Quasi-Solid Zinc-ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202317457. [PMID: 38169125 DOI: 10.1002/anie.202317457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Quasi-solid zinc-ion batteries using hydrogel electrolytes show great potential in energy storage devices owing to their intrinsic safety, fewer side reactions and wide electrochemical windows. However, the dendrite issues on the zinc anodes cannot be fundamentally eliminated and the intrinsic anode-electrolyte interfacial interspace is rarely investigated. Here, we design a dynamically healable gelatin-based hydrogel electrolyte with a highly reversible sol-gel transition, which can construct a conformal electrode-electrolyte interface and further evolve into a stable solid-solid interface by in situ solidification. The unique helical gelatin chain structure provides a uniform channel for zinc ion transport by the bridging effect of sulfate groups. As a consequence, the dynamically healable interface enables dendrite-free zinc anodes and repeatedly repairs the anode-electrolyte interfacial interspaces by the reversible sol-gel transition of gelatin electrolyte to retain long-lasting protection for sustainable zinc-ion batteries.
Collapse
Affiliation(s)
- Zefang Yang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Qi Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Tingqing Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Qinke Li
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Jiameng Shi
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Jinqiu Gan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Shaoe Xiang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Hao Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Chao Hu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Yougen Tang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Haiyan Wang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| |
Collapse
|
13
|
Jia X, Fan X, Chen C, Lu Q, Zhou H, Zhao Y, Wang X, Han S, Ouyang L, Yan H, Dai H, Geng H. Chemical and Structural Engineering of Gelatin-Based Delivery Systems for Therapeutic Applications: A Review. Biomacromolecules 2024; 25:564-589. [PMID: 38174643 DOI: 10.1021/acs.biomac.3c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As a biodegradable and biocompatible protein derived from collagen, gelatin has been extensively exploited as a fundamental component of biological scaffolds and drug delivery systems for precise medicine. The easily engineered gelatin holds great promise in formulating various delivery systems to protect and enhance the efficacy of drugs for improving the safety and effectiveness of numerous pharmaceuticals. The remarkable biocompatibility and adjustable mechanical properties of gelatin permit the construction of active 3D scaffolds to accelerate the regeneration of injured tissues and organs. In this Review, we delve into diverse strategies for fabricating and functionalizing gelatin-based structures, which are applicable to gene and drug delivery as well as tissue engineering. We emphasized the advantages of various gelatin derivatives, including methacryloyl gelatin, polyethylene glycol-modified gelatin, thiolated gelatin, and alendronate-modified gelatin. These derivatives exhibit excellent physicochemical and biological properties, allowing the fabrication of tailor-made structures for biomedical applications. Additionally, we explored the latest developments in the modulation of their physicochemical properties by combining additive materials and manufacturing platforms, outlining the design of multifunctional gelatin-based micro-, nano-, and macrostructures. While discussing the current limitations, we also addressed the challenges that need to be overcome for clinical translation, including high manufacturing costs, limited application scenarios, and potential immunogenicity. This Review provides insight into how the structural and chemical engineering of gelatin can be leveraged to pave the way for significant advancements in biomedical applications and the improvement of patient outcomes.
Collapse
Affiliation(s)
- Xiaoyu Jia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Cheng Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongfeng Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Yanming Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Sanyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Liliang Ouyang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongji Yan
- Department of Medical Cell Biology (MCB), Uppsala University (UU), 751 05 Uppsala, Sweden
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| |
Collapse
|
14
|
Zuev YF, Derkach SR, Bogdanova LR, Voron’ko NG, Kuchina YA, Gubaidullin AT, Lunev IV, Gnezdilov OI, Sedov IA, Larionov RA, Latypova L, Zueva OS. Underused Marine Resources: Sudden Properties of Cod Skin Gelatin Gel. Gels 2023; 9:990. [PMID: 38131976 PMCID: PMC10742947 DOI: 10.3390/gels9120990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The main object of this work was to characterize the structure and properties of laboratory-made fish gelatin from cod skin in comparison with known commercial gelatins of fish and mammalian origin. This is one way we can contribute to the World Food Program and characterize foodstuff resources from alternative natural sources. Our research was based on the combination of an expanded set of complementary physical-chemical methods to study the similarities and distinctions of hydrogels from traditional and novel gelatin sources from underused marine resources. In this work, we have compared the morphology, supramolecular structure and colloid properties of two commercial (mammalian and fish) gelatins with gelatin we extracted from cold-water cod skin in laboratory conditions. The obtained results are novel, showing that our laboratory-produced fish gelatin is much closer to the mammalian one in terms of such parameters as thermal stability and strength of structural network under temperature alterations. Especially interesting are our experimental observations comparing both fish gelatins: it was shown that the laboratory-extracted cod gelatin is essentially more thermally stable compared to its commercial analogue, being even closer in its rheological properties to the mammalian one.
Collapse
Affiliation(s)
- Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
| | - Svetlana R. Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Liliya R. Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
| | - Nikolai G. Voron’ko
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Yulia A. Kuchina
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Aidar T. Gubaidullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Ivan V. Lunev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Oleg I. Gnezdilov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Igor A. Sedov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Radik A. Larionov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Larisa Latypova
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China;
| | - Olga S. Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, 51 Krasnoselskaya Street, 420066 Kazan, Russia;
| |
Collapse
|
15
|
Al-Mofty SED, Azzazy HMES. Effect of mold shape on the microstructure of gelatin sponges for tissue engineering applications. J Mech Behav Biomed Mater 2023; 142:105832. [PMID: 37121162 DOI: 10.1016/j.jmbbm.2023.105832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
Gelatin sponges have been used in several medical applications including tissue replacement, scaffolds, and hemostasis. Each application requires specific parameters that are tuned by the porosity of the sponges. Therefore, changes in the porosity profile of the sponges would change the sponge behavior. In this study, a gelatin solution was prepared and crosslinked with glutaraldehyde. Afterward, the solution was poured into three different mold structures with different volumes and frozen at a constant freezing rate. Each mold was investigated for its physical characteristics including swelling, degradation, porosity, crystallinity, and mechanical compression. Cube-molded gelatin sponges demonstrated high swelling capacity, degradation rate, and porosity while exhibiting low crystallinity, yield strength, and elasticity. These characteristics are suitable for hemostatic application and tissue regeneration. Therefore, it is recommended to freeze dry gelatin sponge in cuboid-shaped dimensions, for research or industry, to control the porosity and crystallinity of the sponge for the best result in biomedical applications.
Collapse
Affiliation(s)
- Saif El-Din Al-Mofty
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Cairo, 11835, Egypt; Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Jena, 07745, Germany.
| |
Collapse
|