1
|
Li X, Wei L, Zhao H, Wang Y, Sun F, Wu M. Ecophysiological, transcriptomic and metabolomic analyses shed light on the response mechanism of Bruguiera gymnorhiza to upwelling stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109074. [PMID: 39213943 DOI: 10.1016/j.plaphy.2024.109074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Mangroves, due to their unique habitats, endure dual stressors from land to ocean and ocean to land directions. While extensive researches have been conducted on land-ocean stressors, studies on ocean-land stressors like upwelling are considerably scarce. In this study, ecophysiological, transcriptome, and metabolome analyses were conducted to determine the responses of mangrove plant (Bruguiera gymnorhiza, B. gymnorhiza) to upwelling stress. The results suggested that upwelling stress in B. gymnorhiza induces oxidative stress and membrane damage, which are mitigated by the synergistic actions of antioxidant enzymes and osmoprotectants. Transcriptomic and metabolomic analyses revealed that upregulated genes related to oxidation-reduction and carbohydrate metabolism, along with accumulated metabolites such as amino acids, lipids, phenols, and organic acids, contribute to enhancing antioxidant capacity and maintaining osmotic balance. Further analysis identified key KEGG pathways involved in the response to upwelling stress, including amino acid metabolism, carbohydrate and energy metabolism, flavonoid biosynthesis, and plant hormone signal transduction. These findings provide vital information into the multi-level response mechanisms of mangrove plants to upwelling stress.
Collapse
Affiliation(s)
- Xiaomei Li
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China; Guangdong Coastal Shelterbelt Forest Ecosystem National Observation and Research Station, Guangzhou, 510520, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Wei
- Guangdong Academy of Forestry, Guangzhou, 510520, China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, China; Guangdong Coastal Shelterbelt Forest Ecosystem National Observation and Research Station, Guangzhou, 510520, China
| | - Hui Zhao
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yutu Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Meilin Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
2
|
Wang X, Li X, Dong S. Biochemical characterization and metabolic reprogramming of amino acids in Soybean roots under drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14319. [PMID: 38693848 DOI: 10.1111/ppl.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Amino acids play important roles in stress resistance, plant growth, development, and quality, with roots serving as the primary organs for drought response. We conducted biochemical and multi-omics analyses to investigate the metabolic processes of root amino acids in drought-resistant (HN44) and drought-sensitive (HN65) soybean (Glycine max) varieties. Our analysis revealed an increase in total amino acid content in both varieties, with phenylalanine, proline, and methionine accumulating in both. Additionally, several amino acids exhibited significant decreases in HN65 but slight increases in HN44. Multi-omics association analysis identified 13 amino acid-related pathways. We thoroughly examined the changes in genes and metabolites involved in various amino acid metabolism/synthesis and determined core genes and metabolites through correlation networks. The phenylalanine, tyrosine, and tryptophan metabolic pathways and proline, glutamic acid and sulfur-containing amino acid pathways were particularly important for drought resistance. Some candidate genes, such as ProDH and P4HA family genes, and metabolites, such as O-acetyl-L-serine, directly affected up- and downstream metabolism to induce drought resistance. This study provided a basis for soybean drought resistance breeding.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaomei Li
- College of Agriculture, Heilongjiang Agricultural Engineering Vocational College, Harbin, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Ran Z, Li Z, Xiao X, Yan C, An M, Chen J, Tang M. Extensive targeted metabolomics analysis reveals the identification of major metabolites, antioxidants, and disease-resistant active pharmaceutical components in Camellia tuberculata (Camellia L.) seeds. Sci Rep 2024; 14:8709. [PMID: 38622262 PMCID: PMC11018803 DOI: 10.1038/s41598-024-58725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Sect. tuberculata plant belongs to the Camellia genus and is named for the "tuberculiform protuberance on the surface of the ovary and fruit". It is a species of great ornamental value and potential medicinal value. However, little has been reported on the metabolites of C. tuberculata seeds. Therefore, this study was conducted to investigate the metabolites of C. tuberculata seeds based on UPLC/ESI-Q TRAP-MS/MS with extensively targeted metabolomics. A total of 1611 metabolites were identified, including 107 alkaloids, 276 amino acids and derivatives, 283 flavonoids, 86 lignans and coumarins, 181 lipids, 68 nucleotides and derivatives, 101 organic acids, 190 phenolic acids, 10 quinones, 4 steroids, 17 tannins, 111 terpenoids, and 177 other metabolites. We compared the different metabolites in seeds between HKH, ZM, ZY, and LY. The 1311 identified different metabolites were classified into three categories. Sixty-three overlapping significant different metabolites were found, of which lignans and coumarins accounted for the largest proportion. The differentially accumulated metabolites were enriched in different metabolic pathways between HKH vs. LY, HKH vs. ZM, HKH vs. ZY, LY vs. ZY, ZM vs. LY and ZM vs. ZY, with the most abundant metabolic pathways being 4, 2, 4, 7, 7 and 5, respectively (p < 0.05). Moreover, among the top 20 metabolites in each subgroup comparison in terms of difference multiplicity 7, 8 and 13. ZM and ZY had the highest phenolic acid content. Ninety-six disease-resistant metabolites and 48 major traditional Chinese medicine agents were identified based on seven diseases. The results of this study will not only lead to a more comprehensive and in-depth understanding of the metabolic properties of C. tuberculata seeds, but also provide a scientific basis for the excavation and further development of its medicinal value.
Collapse
Affiliation(s)
- Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang, China
| | - Zhi Li
- College of Forestry, Guizhou University, Guiyang, China.
- Biodiversity and Nature Conservation Research Center, Guizhou University, Guiyang, China.
| | - Xu Xiao
- College of Forestry, Guizhou University, Guiyang, China
| | - Chao Yan
- College of Forestry, Guizhou University, Guiyang, China
| | - Mingtai An
- College of Forestry, Guizhou University, Guiyang, China
- Biodiversity and Nature Conservation Research Center, Guizhou University, Guiyang, China
| | - Juyan Chen
- Guizhou Academy of Forestry Sciences, Guiyang, China
| | - Ming Tang
- College of Forestry, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
4
|
Li X, Li Y, Wei A, Wang Z, Huang H, Huang Q, Yang L, Gao Y, Zhu G, Liu Q, Li Y, Wei S, Wei D. Integrated transcriptomic and proteomic analyses of two sugarcane (Saccharum officinarum Linn.) varieties differing in their lodging tolerance. BMC PLANT BIOLOGY 2023; 23:601. [PMID: 38030995 PMCID: PMC10685470 DOI: 10.1186/s12870-023-04622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Lodging seriously affects sugarcane stem growth and sugar accumulation, reduces sugarcane yield and sucrose content, and impedes mechanization. However, the molecular mechanisms underlying sugarcane lodging tolerance remain unclear. In this study, comprehensive transcriptomic and proteomic analyses were performed to explore the differential genetic regulatory mechanisms between upright (GT42) and lodged (GF98-296) sugarcane varieties. RESULTS The stain test showed that GT42 had more lignin and vascular bundles in the stem than GF98-296. The gene expression analysis revealed that the genes that were differentially expressed between the two varieties were mainly involved in the phenylpropanoid pathway at the growth stage. The protein expression analysis indicated that the proteins that were differentially expressed between the two varieties were related to the synthesis of secondary metabolites, the process of endocytosis, and the formation of aminoacyl-tRNA. Time-series analysis revealed variations in differential gene expression patterns between the two varieties, whereas significant protein expression trends in the two varieties were largely consistent, except for one profile. The expression of CYP84A, 4CL, and CAD from the key phenylpropanoid biosynthetic pathway was enhanced in GT42 at stage 2 but suppressed in GF98-296 at the growth stage. Furthermore, the expression of SDT1 in the nicotinate and nicotinamide metabolism was enhanced in GT42 cells but suppressed in GF98-296 cells at the growth stage. CONCLUSION Our findings provide reference data for mining lodging tolerance-related genes that are expected to facilitate the selective breeding of sugarcane varieties with excellent lodging tolerance.
Collapse
Affiliation(s)
- Xiang Li
- Guangxi Subtropical Crops Research Institute, Nanning, 530002, China
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Afairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research InstituteGuangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yijie Li
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Afairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research InstituteGuangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Ailin Wei
- Baise Institue of Agricultural Sciences, Baise, 533612, China
| | - Zeping Wang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Afairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research InstituteGuangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Hairong Huang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Afairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research InstituteGuangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Quyan Huang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Litao Yang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yijing Gao
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Afairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research InstituteGuangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Guanghu Zhu
- Center for Applied Mathematics of Guangxi (GUET), Guilin, 541004, China
| | - Qihuai Liu
- Center for Applied Mathematics of Guangxi (GUET), Guilin, 541004, China
| | - Yangrui Li
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Afairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement /Sugarcane Research InstituteGuangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Shaolong Wei
- Guangxi Subtropical Crops Research Institute, Nanning, 530002, China.
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Debin Wei
- Baise Institue of Agricultural Sciences, Baise, 533612, China.
| |
Collapse
|
5
|
Kasapoglu AG, Ilhan E, Aydin M, Yigider E, Inal B, Buyuk I, Taspinar MS, Ciltas A, Agar G. Characterization of Two-Component System gene ( TCS) in melatonin-treated common bean under salt and drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1733-1754. [PMID: 38162914 PMCID: PMC10754802 DOI: 10.1007/s12298-023-01406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
The two-component system (TCS) generally consists of three elements, namely the histidine kinase (HK), response regulator (RR), and histidine phosphotransfer (HP) gene families. This study aimed to assess the expression of TCS genes in P. vulgaris leaf tissue under salt and drought stress and perform a genome-wide analysis of TCS gene family members using bioinformatics methods. This study identified 67 PvTCS genes, including 10 PvHP, 38 PvRR, and 19 PvHK, in the bean genome. PvHK2 had the maximum number of amino acids with 1261, whilst PvHP8 had the lowest number with 87. In addition, their theoretical isoelectric points were between 4.56 (PvHP8) and 9.15 (PvPRR10). The majority of PvTCS genes are unstable. Phylogenetic analysis of TCS genes in A. thaliana, G. max, and bean found that PvTCS genes had close phylogenetic relationships with the genes of other plants. Segmental and tandem duplicate gene pairs were detected among the TCS genes and TCS genes have been subjected to purifying selection pressure in the evolutionary process. Furthermore, the TCS gene family, which has an important role in abiotic stress and hormonal responses in plants, was characterized for the first time in beans, and its expression of TCS genes in bean leaves under salt and drought stress was established using RNAseq and qRT-PCR analyses. The findings of this study will aid future functional and genomic studies by providing essential information about the members of the TCS gene family in beans. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01406-5.
Collapse
Affiliation(s)
- Ayse Gul Kasapoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Emre Ilhan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Murat Aydin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25050 Erzurum, Turkey
| | - Esma Yigider
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25050 Erzurum, Turkey
| | - Behcet Inal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Siirt University, 56100 Siirt, Turkey
| | - Ilker Buyuk
- Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Mahmut Sinan Taspinar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25050 Erzurum, Turkey
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25050 Erzurum, Turkey
| | - Guleray Agar
- Department of Biology, Faculty of Science, Ataturk University, 25050 Erzurum, Turkey
| |
Collapse
|