1
|
Maldonado-García JL, Fragozo A, Pavón L. Cytokine release syndrome induced by anti-programmed death-1 treatment in a psoriasis patient: A dark side of immune checkpoint inhibitors. World J Clin Cases 2024; 12:6782-6790. [DOI: 10.12998/wjcc.v12.i35.6782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/24/2024] Open
Abstract
In recent years, cancer immunotherapy has introduced novel treatments, such as monoclonal antibodies, which have facilitated targeted therapies against tumor cells. Programmed death-1 (PD-1) is an immune checkpoint expressed in T cells that regulates the immune system’s activity to prevent over-activation and tissue damage caused by inflammation. However, PD-1 is also expressed in tumor cells and functions as an immune evasion mechanism, making it a therapeutic target to enhance the immune response and eliminate tumor cells. Consequently, immune checkpoint inhibitors (ICIs) have emerged as an option for certain tumor types. Nevertheless, blocking immune checkpoints can lead to immune-related adverse events (irAEs), such as psoriasis and cytokine release syndrome (CRS), as exemplified in the clinical case presented by Zhou et al involving a patient with advanced gastric cancer who received sintilimab, a monoclonal antibody targeting PD-1. Subsequently, the patient experienced exacerbation of psoriasis and CRS. The objective of this editorial article is to elucidate potential immunologic mechanisms that may contribute to the development of CRS and psoriasis in patients receiving ICIs. It is crucial to acknowledge that while ICIs offer superior safety and efficacy compared to conventional therapies, they can also manifest irAEs affecting the skin, gastrointestinal tract, or respiratory system. In severe cases, these irAEs can lead to life-threatening complications such as circulatory shock or multiorgan failure. Consequently, it is recommended that patients receiving ICIs undergo regular monitoring to identify and manage these adverse events effectively.
Collapse
Affiliation(s)
- José Luis Maldonado-García
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Mexico City 1134, Ciudad de México, Mexico
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioterapéuticos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 11340, Mexico
| |
Collapse
|
2
|
Li H, Duan J, Zhang T, Fu Y, Xu Y, Miao H, Ge X. miR-16-5p aggravates sepsis-associated acute kidney injury by inducing apoptosis. Ren Fail 2024; 46:2322688. [PMID: 38445373 PMCID: PMC10919310 DOI: 10.1080/0886022x.2024.2322688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a common disease in pediatric intensive care units (ICU) with high morbidity and mortality. The newly discovered results indicate that microRNAs (miRNAs) play an important role in the diagnosis and treatment of S-AKI and can be used as markers for early diagnosis. In this study, the expression level of miR-16-5p was found to be significantly upregulated about 20-fold in S-AKI patients, and it also increased by 1.9 times in the renal tissue of S-AKI mice. Receiver operating characteristic (ROC) curve analysis showed that miR-16-5p had the highest predictive accuracy in the diagnosis of S-AKI (AUC = 0.9188). In vitro, the expression level of miR-16-5p in HK-2 cells treated with 10 μg/mL lipopolysaccharide (LPS) increased by more than 2 times. In addition, LPS-exposed renal tissue and HK-2 cells lead to upregulation of inflammatory cytokines IL-6, IL-1β, TNF-a, and kidney damage molecules kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL). However, inhibition of miR-16-5p significantly mitigated LPS expose-mediated kidney injury and inflammation. Furthermore, LPS-exposed HK-2 cells increased more than 1.7-fold the expression levels of Bax and caspase-3, decreased 3.2-fold the expression level of B-cell lymphoma-2 (Bcl-2), and significantly promoted the occurrence of apoptosis. MiR-16-5p mimic further increased LPS-induced apoptosis in HK-2 cells. Nevertheless, inhibition of miR-16-5p significantly attenuated this effect. In summary, up-regulation of miR-16-5p expression can significantly aggravate renal injury and apoptosis in S-AKI, which also proves that miR-16-5p can be used as a potential biomarker to promote early identification of S-AKI.
Collapse
Affiliation(s)
- Han Li
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Key Laboratory of Children’s Major Disease Research, Jiangsu, PR China
| | - Junyan Duan
- Department of Pediatrics, Changzhou Second Peoples Hospital Affiliated to Nanjing Medical University, Changzhou, PR China
| | - Tongtong Zhang
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yingjie Fu
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yue Xu
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hongjun Miao
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xuhua Ge
- Department of Emergency/Critical Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, PR China
- Jiangsu Key Laboratory of Children’s Major Disease Research, Jiangsu, PR China
| |
Collapse
|
3
|
Bidikian A, Bewersdorf JP, Shallis RM, Getz TM, Stempel JM, Kewan T, Stahl M, Zeidan AM. Targeted therapies for myelodysplastic syndromes/neoplasms (MDS): current landscape and future directions. Expert Rev Anticancer Ther 2024; 24:1131-1146. [PMID: 39367718 DOI: 10.1080/14737140.2024.2414071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
INTRODUCTION Myelodysplastic syndromes/neoplasms (MDS) are a heterogeneous group of hematologic malignancies that are stratified into high-risk (HR-MDS) and low-risk (LR-MDS) categories. Until recently, LR-MDS has been typically managed by supportive measures and erythropoiesis-stimulating agents (ESAs); whereas management of HR-MDS typically included hypomethylating agents and allogeneic hematopoietic stem cell transplant. However, the limited rates and durations of response observed with these interventions prompted the search for targeted therapies to improve the outcomes among patients with MDS. AREAS COVERED Here, we review the current landscape of targeted therapies in MDS. These include pyruvate kinase and hypoxia-inducible factor (HIF) activators; TGF-beta, telomerase, BCL2 and isocitrate dehydrogenase (IDH) inhibitors; as well as novel approaches targeting inflammation, pyroptosis, immune evasion, and RNA splicing machinery. EXPERT OPINION This review highlights the progress and challenges in MDS treatment. Despite some promising results, many therapies remain in early development or have faced setbacks, emphasizing the need for a more comprehensive understanding of the disease's pathobiology. Continued research into targeted therapies, homogenous clinical trial designs, as well as increased incorporation of molecular prognostic tools and artificial intelligence into trial design are essential for developing effective treatments for MDS and improving patient outcomes.
Collapse
Affiliation(s)
- Aram Bidikian
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Jan P Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Rory M Shallis
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Ted M Getz
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Jessica M Stempel
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Tariq Kewan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
4
|
Yang S, Raza F, Li K, Qiu Y, Su J, Qiu M. Maximizing arsenic trioxide's anticancer potential: Targeted nanocarriers for solid tumor therapy. Colloids Surf B Biointerfaces 2024; 241:114014. [PMID: 38850742 DOI: 10.1016/j.colsurfb.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Arsenic trioxide (ATO) has gained significant attention due to its promising therapeutic effects in treating different diseases, particularly acute promyelocytic leukemia (APL). Its potent anticancer mechanisms have been extensively studied. Despite the great efficacy ATO shows in fighting cancers, drawbacks in the clinical use are obvious, especially for solid tumors, which include rapid renal clearance and short half-life, severe adverse effects, and high toxicity to normal cells. Recently, the emergence of nanomedicine offers a potential solution to these limitations. The enhanced biocompatibility, excellent targeting capability, and desirable effectiveness have attracted much interest. Therefore, we summarized various nanocarriers for targeted delivery of ATO to solid tumors. We also provided detailed anticancer mechanisms of ATO in treating cancers, its clinical trials and shortcomings as well as the combination therapy of ATO and other chemotherapeutic agents for reduced drug resistance and synergistic effects. Finally, the future study direction and prospects were also presented.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujiao Qiu
- The Wharton School and School of Nursing, University of Pennsylvania, Philadelphia 19104, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Yan M, Wang H, Wei R, Li W. Arsenic trioxide: applications, mechanisms of action, toxicity and rescue strategies to date. Arch Pharm Res 2024; 47:249-271. [PMID: 38147202 DOI: 10.1007/s12272-023-01481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
Arsenical medicine has obtained its status in traditional Chinese medicine for more than 2,000 years. In the 1970s, arsenic trioxide was identified to have high efficacy and potency for the treatment of acute promyelocytic leukemia, which promoted many studies on the therapeutic effects of arsenic trioxide. Currently, arsenic trioxide is widely used to treat acute promyelocytic leukemia and various solid tumors through various mechanisms of action in clinical practice; however, it is accompanied by a series of adverse reactions, especially cardiac toxicity. This review presents a comprehensive overview of arsenic trioxide from preclinical and clinical efficacy, potential mechanisms of action, toxicities, and rescue strategies for toxicities to provide guidance or assistance for the clinical application of arsenic trioxide.
Collapse
Affiliation(s)
- Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| | - Hao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Rui Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Pharmacy Department, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenwen Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|