1
|
Rodríguez Pozo FR, Ianev D, Martínez Rodríguez T, Arias JL, Linares F, Gutiérrez Ariza CM, Valentino C, Arrebola Vargas F, Hernández Benavides P, Paredes JM, Medina Pérez MDM, Rossi S, Sandri G, Aguzzi C. Development of Halloysite Nanohybrids-Based Films: Enhancing Mechanical and Hydrophilic Properties for Wound Healing. Pharmaceutics 2024; 16:1258. [PMID: 39458589 PMCID: PMC11509966 DOI: 10.3390/pharmaceutics16101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Most of the therapeutic systems developed for managing chronic skin wounds lack adequate mechanical and hydration properties, primarily because they rely on a single component. This study addresses this issue by combining organic and inorganic materials to obtain hybrid films with enhanced mechanical behavior, adhesion, and fluid absorption properties. To that aim, chitosan/hydrolyzed collagen blends were mixed with halloysite/antimicrobial nanohybrids at 10% and 20% (w/w) using glycerin or glycerin/polyethylene glycol-1500 as plasticizers. The films were characterized through the use of Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and electron microscopy. The mechanical properties were evaluated macroscopically using tensile tests, and at a nanoscale through atomic force microscopy (AFM) and nanoindentation. Thermodynamic studies were conducted to assess their hydrophilic or hydrophobic character. Additionally, in vitro cytocompatibility tests were performed on human keratinocytes. Results from FTIR, TGA, AFM and electron microscopy confirmed the hybrid nature of the films. Both tensile tests and nanomechanical measurements postulated that the nanohybrids improved the films' toughness and adhesion and optimized the nanoindentation properties. All nanohybrid-loaded films were hydrophilic and non-cytotoxic, showcasing their potential for skin wound applications given their enhanced performance at the macro- and nanoscale.
Collapse
Affiliation(s)
- Francisco Ramón Rodríguez Pozo
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| | - Daiana Ianev
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.I.); (C.V.); (S.R.); (G.S.)
| | - Tomás Martínez Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. Granada), Andalusian Health Service (SAS), University of Granada, 18012 Granada, Spain
| | - Fátima Linares
- Unit of Force Atomic Microscopy, Scientific Instrumentation Center, University of Granada, 18003 Granada, Spain; (F.L.); (C.M.G.A.)
| | - Carlos Miguel Gutiérrez Ariza
- Unit of Force Atomic Microscopy, Scientific Instrumentation Center, University of Granada, 18003 Granada, Spain; (F.L.); (C.M.G.A.)
| | - Caterina Valentino
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.I.); (C.V.); (S.R.); (G.S.)
| | - Francisco Arrebola Vargas
- Department of Histology, Institute of Neurosciences, Centre for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain;
| | - Pablo Hernández Benavides
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| | - José Manuel Paredes
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente UEQ, University of Granada, Cartuja Campus, 18071 Granada, Spain;
| | - María del Mar Medina Pérez
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| | - Silvia Rossi
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.I.); (C.V.); (S.R.); (G.S.)
| | - Giuseppina Sandri
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.I.); (C.V.); (S.R.); (G.S.)
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| |
Collapse
|
2
|
Bisio C, Brendlé J, Cahen S, Feng Y, Hwang SJ, Nocchetti M, O'Hare D, Rabu P, Melanova K, Leroux F. Recent advances and perspectives for intercalation layered compounds. Part 2: applications in the field of catalysis, environment and health. Dalton Trans 2024; 53:14551-14581. [PMID: 39046465 DOI: 10.1039/d4dt00757c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Intercalation compounds represent a unique class of materials that can be anisotropic (1D and 2D-based topology) or isotropic (3D) through their guest/host superlattice repetitive organisation. Intercalation refers to the reversible introduction of guest species with variable natures into a crystalline host lattice. Different host lattice structures have been used for the preparation of intercalation compounds, and many examples are produced by exploiting the flexibility and the ability of 2D-based hosts to accommodate different guest species, ranging from ions to complex molecules. This reaction is then carried out to allow systematic control and fine tuning of the final properties of the derived compounds, thus allowing them to be used for various applications. This review mainly focuses on the recent applications of intercalation layered compounds (ILCs) based on layered clays, zirconium phosphates, layered double hydroxides and graphene as heterogeneous catalysts, for environmental and health purposes, aiming at collecting and discussing how intercalation processes can be exploited for the selected applications.
Collapse
Affiliation(s)
- Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, AL, Italy.
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via C. Golgi 19, 20133 Milano, MI, Italy
| | - Jocelyne Brendlé
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse CEDEX, France.
| | - Sébastien Cahen
- Institut Jean Lamour - UMR 7198 CNRS-Université de Lorraine, Groupe Matériaux Carbonés, Campus ARTEM - 2 Allée André Guinier, B.P. 50840, F54011, NancyCedex, France
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | - Dermot O'Hare
- Chemistry Research Laboratory, University of Oxford Department of Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Pierre Rabu
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS - Université de Strasbourg, UMR7504, 23 rue du Loess, BP43, 67034 Strasbourg cedex 2, France
| | - Klara Melanova
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic.
| | - Fabrice Leroux
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, UMR CNRS 6296, Clermont Auvergne INP, 24 av Blaise Pascal, BP 80026, 63171 Aubière cedex, France.
| |
Collapse
|
3
|
Ardelean AI, Marza SM, Negoescu A, Dragomir MF, Sarosi C, Moldovan M, Ene R, Oana L. Assessing Biocompatibility of Composite Cements by Peri/Intramuscular and Subcutaneous Implantation in Rats. Biomedicines 2024; 12:1718. [PMID: 39200185 PMCID: PMC11351888 DOI: 10.3390/biomedicines12081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
This study's goal was to evaluate the biocompatibility of two composite cements over a 90-day period by analyzing the individuals' behavior as well as conducting macroscopic and histological examinations and Computed Tomography (CT) scans. We conducted the cytotoxicity test by placing the materials subcutaneously and peri/intramuscularly. Days 30 and 90 were crucial for our research. On those days, we harvested the implants, kidneys and liver to search for any toxic deposits. The biomaterial's uniformity, color and texture remained unaltered despite being in intimate contact with the tissue. Although a slight inflammatory response was observed in the placement location, we observed an improved outcome of the interaction between the material and its insertion area. There were no notable discoveries in the liver and kidneys. According to the obtained results, the biomaterials did not produce any clinical changes nor specific irritation during the research, demonstrating that they are biocompatible with biological tissues.
Collapse
Affiliation(s)
- Alina Ioana Ardelean
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.I.A.); (M.F.D.); (L.O.)
| | - Sorin Marian Marza
- Department of Veterinary Imagistics, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andrada Negoescu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Madalina Florina Dragomir
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.I.A.); (M.F.D.); (L.O.)
| | - Codruta Sarosi
- Department Polymeric Composites, Babeș-Bolyai University, 400294 Cluj-Napoca, Romania; (C.S.); (M.M.)
| | - Marioara Moldovan
- Department Polymeric Composites, Babeș-Bolyai University, 400294 Cluj-Napoca, Romania; (C.S.); (M.M.)
| | - Razvan Ene
- Department Orthopedics, Anesthesia and Intensive Care, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania
- Orthopedics and Traumatology Department, Bucharest Emergency University Hospital, 050098 Bucharest, Romania
| | - Liviu Oana
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, University of Agricultura Sciencies and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (A.I.A.); (M.F.D.); (L.O.)
| |
Collapse
|
4
|
Yang W, Zhou Y, Song J, Li Y, Gong T. A Novel Approach for Preparing Sepiolite Micron Powder Based on Steam Pressure Changes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3574. [PMID: 39063866 PMCID: PMC11278942 DOI: 10.3390/ma17143574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
As a common method for preparing micron powder in industrial operations, the mechanical extrusion method simply pursues the particle size without considering the microstructure characteristics of sepiolite, which leads to problems such as bundles of sepiolite not being effectively dispersed, and thus the disruption of fibers is inevitably caused. In this work, a new micronization method for disaggregating these bundles while preserving the original structural integrity of the fibers is proposed based on steam pressure changes. The effects of steam pressure changes on the particle size distribution, microstructure, and properties of treated sepiolite are studied using X-ray fluorescence spectrometer (XRF), X-ray diffractometer (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), and a specific surface area and aperture analyzer (BET). The experimental results show that the particle size of sepiolite powder depends greatly on steam pressure, and sepiolite powder with mass ratio of 91.6% and a particle size D97 of 21.27 μm is obtained at a steam pressure of 0.6 MPa. Compared to the sepiolite after mechanical extrusion, the sepiolite treated with steam pressure changes can maintain the integrity of its crystalline structure. The specific surface area of sepiolite enhanced from 80.15 m2 g-1 to 141.63 m2 g-1 as the steam pressure increased from 0.1 to 0.6 MPa, which is about 1.6 times that of the sample treated with mechanical extrusion.
Collapse
Affiliation(s)
- Wenjia Yang
- College of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China; (W.Y.); (J.S.); (Y.L.); (T.G.)
| | - Youhang Zhou
- College of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China; (W.Y.); (J.S.); (Y.L.); (T.G.)
- Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Jialin Song
- College of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China; (W.Y.); (J.S.); (Y.L.); (T.G.)
| | - Yuze Li
- College of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China; (W.Y.); (J.S.); (Y.L.); (T.G.)
| | - Tianyu Gong
- College of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China; (W.Y.); (J.S.); (Y.L.); (T.G.)
| |
Collapse
|
5
|
Jiang Y, Wang L, Qi W, Yin P, Liao X, Luo Y, Ding Y. Antibacterial and self-healing sepiolite-based hybrid hydrogel for hemostasis and wound healing. BIOMATERIALS ADVANCES 2024; 159:213838. [PMID: 38531257 DOI: 10.1016/j.bioadv.2024.213838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/29/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
The process of wound healing necessitates a specific environment, thus prompting extensive research into the utilization of hydrogels for this purpose. While numerous hydrogel structures have been investigated, the discovery of a self-healing hydrogel possessing favorable biocompatibility, exceptional mechanical properties, and effective hemostatic and antibacterial performance remains uncommon. In this work, a polyvinyl alcohol (PVA) hybrid hydrogel was meticulously designed through a simple reaction, wherein CuxO anchored sepiolite was incorporated into the hydrogel. The results indicate that introduction of sepiolite greatly improves the toughness, self-healing and adhesion properties of the PVA hydrogels. CuxO nanoparticles endow the hydrogels with excellent antibacterial performance towards Staphylococcus aureus and Escherichia coli. The application of hybrid hydrogels for fast hemostasis and wound healing are verified in vitro and in vivo with rat experiments. This work thereby demonstrates an effective strategy for designing biodegradable hemostatic and wound healing materials.
Collapse
Affiliation(s)
- Yizhi Jiang
- School of mechanical engineering and mechanics, Xiangtan University, Xiangtan 411105, China
| | - Li Wang
- College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Wangdan Qi
- College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Peisheng Yin
- School of mechanical engineering and mechanics, Xiangtan University, Xiangtan 411105, China
| | - Xiang Liao
- Xiangtan Sepiolite Technology Co., LTD, Xiangtan 411100, China
| | - Yuze Luo
- College of Life Science, Hunan Normal University, Changsha 410081, China.
| | - Yanhuai Ding
- School of mechanical engineering and mechanics, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
6
|
Duan Z, Lu L, Huang Y, Pan Y, Wu X, Yan L. A Halloysite Nanotubes-based Probe for Efficient Fluorescence Detection and Adsorption Removal of Pb 2+ in Water. J Fluoresc 2024:10.1007/s10895-024-03662-4. [PMID: 38512429 DOI: 10.1007/s10895-024-03662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
The detection and removal of Pb2+ is of utmost importance for environmental protection and human health due to its toxicity, persistent pollution, and bioaccumulation effects. To address the limitations associated with organic small molecule-based fluorescence probes such as poor water solubility and single functionality in detecting Pb2+, a fluorescence probe based on halloysite nanotubes was developed. This probe not only enables specific, rapid, and reliable detection of Pb2+ but also facilitates efficient removal of it from water. The development of this bifunctional fluorescent probe provides a valuable insight for designing more advanced probes targeting heavy metal ions.
Collapse
Affiliation(s)
- Zhideng Duan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, P.R. China
| | - Li Lu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, P.R. China
| | - Yan Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, P.R. China
| | - Yan Pan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, P.R. China
| | - Xiongzhi Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, P.R. China
| | - Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541006, P.R. China.
| |
Collapse
|
7
|
Shahzad N, Alzahrani AR, Aziz Ibrahim IA, Shahid I, Alanazi IM, Falemban AH, Imam MT, Mohsin N, Azlina MFN, Arulselvan P. Therapeutic strategy of biological macromolecules based natural bioactive compounds of diabetes mellitus and future perspectives: A systematic review. Heliyon 2024; 10:e24207. [PMID: 38298622 PMCID: PMC10828662 DOI: 10.1016/j.heliyon.2024.e24207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
High blood glucose levels are a hallmark of the metabolic syndrome known as diabetes mellitus. More than 600 million people will have diabetes by 2045 as the global prevalence of the disease continues to rise. Contemporary antidiabetic drugs reduce hyperglycemia and its consequences. However, these drugs come with undesirable side effects, so it's encouraging that research into plant extracts and bioactive substances with antidiabetic characteristics is on the rise. Natural remedies are preferable to conventional anti-diabetic drugs since they are safer for the body, more affordable and have fewer potential adverse effects. Biological macromolecules such as liposomes, niosomes, polymeric nanoparticles, solid lipid nanoparticles, nanoemulsions and metallic nanoparticles are explored in this review. Current drug restrictions have been addressed, and the effectiveness of plant-based antidiabetic therapies has enhanced the merits of these methods. Plant extracts' loading capacity and the carriers' stability are the primary obstacles in developing plant-based nanocarriers. Hydrophilic, hydrophobic, and amphiphilic drugs are covered, and a brief overview of the amphipathic features of liposomes, phospholipids, and lipid nanocarriers is provided. Metallic nanoparticles' benefits and attendant risks are highlighted to emphasize their efficiency in treating hyperglycemia. Researchers interested in the potential of nanoparticles loaded with plant extracts as antidiabetic therapeutics may find the current helpful review.
Collapse
Affiliation(s)
- Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nehal Mohsin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| |
Collapse
|
8
|
Zhang X, Heidari Majd M. Synthesis of halloysite nanotubes decorated with green silver nanoparticles to investigate cytotoxicity, lipid peroxidation and induction of apoptosis in acute leukemia cells. Sci Rep 2023; 13:17182. [PMID: 37821481 PMCID: PMC10567680 DOI: 10.1038/s41598-023-43978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023] Open
Abstract
Leukemia is the 15th most common cancer in adults and the first most common cancer in children under the age of five, and unfortunately, it accounts for many deaths every year. Since leukemia chemotherapy usually fails due to chemotherapy resistance and disease relapse, many efforts are being made to develop new methods of leukemia treatment. Therefore, for the first time, we decorated halloysite nanotubes (HNTs) with green silver nanoparticles (Ag NPs) with the help of Moringa Peregrina leaves extract to increase the solubility of Ag NPs and to use the protective ability of HNTs against lipid peroxidation in erythrocytes. Cell survival assay by the MTT method showed that HNTs-Ag NPs can decrease the survival of Jurkat T-cells to about 10% compared to the control. The IC50 value was estimated as 0.00177 mg/mL after 96 h of treatment. Investigating the expression of genes involved in apoptosis by Real-time PCR proved that decorated HNTs with Ag NPs can increase the Bak1/Bclx ratio by 17.5 times the control group. Also, the expression of the caspase-3 gene has increased 10 times compared to the control. Finally, the reduction of malondialdehyde production after 24 h proved that the presence of HNTs can have a good protective effect on lipid peroxidation in erythrocytes. Therefore, on the one hand, we can hope for the ability of HNTs-Ag NPs to induce apoptosis in blood cancer cells and on the other hand for its protective effects on normal blood cells.
Collapse
Affiliation(s)
- Xuan Zhang
- Hematology Tumor Center, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an City, 710000, China
| | - Mostafa Heidari Majd
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.
| |
Collapse
|