1
|
Li YZ, Wang Y, Jiao Q, Chi J, Liang Y, Fan B, Li GY. Complexin regulation of synaptic vesicle release: mechanisms in the central nervous system and specialized retinal ribbon synapses. Cell Commun Signal 2024; 22:581. [PMID: 39627811 PMCID: PMC11613576 DOI: 10.1186/s12964-024-01942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
Synaptic ribbons, recognized for their pivotal role in conveying sensory signals in the visual pathway, are intricate assemblages of presynaptic proteins. Complexin (CPX) regulates synaptic vesicle fusion and neurotransmitter release by modulating the assembly of the soluble NSF attachment protein receptor (SNARE) complex, ensuring precise signal transmission in the retina and the broader central nervous system (CNS). While CPX1 or CPX2 isoforms (CPX1/2) play crucial roles in classical CNS synapses, CPX3 or CPX4 isoforms (CPX3/4) specifically regulate retinal ribbon synapses. These isoforms are essential for sustaining synaptic plasticity related to light signaling, adapting to changes in circadian rhythms, and dynamically regulating visual function under varying light conditions. This review explores the regulation of synaptic vesicle release by CPX in both the CNS and retinal ribbon synapses, with a focus on the mechanisms governing CPX3/4 function in the retina. Additionally, by reviewing the role of CPX and ribbon synapse dysfunction in non-retinal diseases, we further hypothesize the potential mechanisms of CPX in retinal diseases and propose therapeutic strategies targeting CPX to address retinal and CNS disorders associated with synaptic dysfunction.
Collapse
Affiliation(s)
- Yun-Zhi Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Yu Wang
- Department of Neurology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Qing Jiao
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Jing Chi
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Yang Liang
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China.
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, Changchun, 130041, China.
| |
Collapse
|
2
|
Maddox JW, Ordemann GJ, de la Rosa Vázquez JAM, Huang A, Gault C, Wisner SR, Randall K, Futagi D, Salem NA, Mayfield D, Zemelman BV, DeVries S, Hoon M, Lee A. A non-conducting role of the Ca v1.4 Ca 2+ channel drives homeostatic plasticity at the cone photoreceptor synapse. eLife 2024; 13:RP94908. [PMID: 39531384 PMCID: PMC11556788 DOI: 10.7554/elife.94908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
In congenital stationary night blindness, type 2 (CSNB2)-a disorder involving the Cav1.4 (L-type) Ca2+ channel-visual impairment is mild considering that Cav1.4 mediates synaptic release from rod and cone photoreceptors. Here, we addressed this conundrum using a Cav1.4 knockout (KO) mouse and a knock-in (G369i KI) mouse expressing a non-conducting Cav1.4. Surprisingly, Cav3 (T-type) Ca2+ currents were detected in cones of G369i KI mice and Cav1.4 KO mice but not in cones of wild-type mouse, ground squirrels, and macaque retina. Whereas Cav1.4 KO mice are blind, G369i KI mice exhibit normal photopic (i.e. cone-mediated) visual behavior. Cone synapses, which fail to form in Cav1.4 KO mice, are present, albeit enlarged, and with some errors in postsynaptic wiring in G369i KI mice. While Cav1.4 KO mice lack evidence of cone synaptic responses, electrophysiological recordings in G369i KI mice revealed nominal transmission from cones to horizontal cells and bipolar cells. In CSNB2, we propose that Cav3 channels maintain cone synaptic output provided that the nonconducting role of Cav1.4 in cone synaptogenesis remains intact. Our findings reveal an unexpected form of homeostatic plasticity that relies on a non-canonical role of an ion channel.
Collapse
Affiliation(s)
- J Wesley Maddox
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Gregory J Ordemann
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | | | - Angie Huang
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Christof Gault
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Serena R Wisner
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- MadisonMadisonUnited States
- Neuroscience Training Program, University of Wisconsin-MadisonMadisonUnited States
| | - Kate Randall
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Daiki Futagi
- Department of Ophthalmology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Nihal A Salem
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Dayne Mayfield
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Boris V Zemelman
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| | - Steven DeVries
- Department of Ophthalmology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- MadisonMadisonUnited States
- McPherson Eye Research InstituteMadisonUnited States
| | - Amy Lee
- Department of Neuroscience, University of Texas-AustinAustinUnited States
| |
Collapse
|
3
|
Maddox JW, Ordemann GJ, de la Rosa Vázquez J, Huang A, Gault C, Wisner SR, Randall K, Futagi D, Salem NA, Mayfield RD, Zemelman BV, DeVries SH, Hoon M, Lee A. A non-conducting role of the Ca v1.4 Ca 2+ channel drives homeostatic plasticity at the cone photoreceptor synapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.05.570129. [PMID: 38106079 PMCID: PMC10723350 DOI: 10.1101/2023.12.05.570129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In congenital stationary night blindness type 2 (CSNB2)-a disorder involving the Cav1.4 (L-type) Ca2+ channel-visual impairment is mild considering that Cav1.4 mediates synaptic release from rod and cone photoreceptors. Here, we addressed this conundrum using a Cav1.4 knockout (KO) mouse and a knock-in (G369i KI) mouse expressing a non-conducting Cav1.4. Surprisingly, Cav3 (T-type) Ca2+ currents were detected in cones of G369i KI mice and Cav1.4 KO mice but not in cones of wild-type mouse, ground squirrel, and macaque retina. Whereas Cav1.4 KO mice are blind, G369i KI mice exhibit normal photopic (i.e., cone-mediated) visual behavior. Cone synapses, which fail to form in Cav1.4 KO mice, are present, albeit enlarged, and with some errors in postsynaptic wiring in G369i KI mice. While Cav1.4 KO mice lack evidence of cone synaptic responses, electrophysiological recordings in G369i KI mice revealed nominal transmission from cones to horizontal cells and bipolar cells. In CSNB2, we propose that Cav3 channels maintain cone synaptic output provided that the nonconducting role of Cav1.4 in cone synaptogenesis remains intact. Our findings reveal an unexpected form of homeostatic plasticity that relies on a non-canonical role of an ion channel.
Collapse
Affiliation(s)
- J. Wesley Maddox
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
- These authors contributed equally
| | - Gregory J. Ordemann
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
- These authors contributed equally
| | | | - Angie Huang
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - Christof Gault
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - Serena R. Wisner
- Dept. of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison WI 53706 USA
| | - Kate Randall
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - Daiki Futagi
- Dept. of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nihal A. Salem
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - R. Dayne Mayfield
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - Boris V. Zemelman
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| | - Steven H. DeVries
- Dept. of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mrinalini Hoon
- Dept. of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, Madison WI 53706 USA
| | - Amy Lee
- Dept of Neuroscience, University of Texas-Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Thoreson WB, Zenisek D. Presynaptic Proteins and Their Roles in Visual Processing by the Retina. Annu Rev Vis Sci 2024; 10:10.1146/annurev-vision-101322-111204. [PMID: 38621251 PMCID: PMC11536687 DOI: 10.1146/annurev-vision-101322-111204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The sense of vision begins in the retina, where light is detected and processed through a complex series of synaptic connections into meaningful information relayed to the brain via retinal ganglion cells. Light responses begin as tonic and graded signals in photoreceptors, later emerging from the retina as a series of spikes from ganglion cells. Processing by the retina extracts critical features of the visual world, including spatial frequency, temporal frequency, motion direction, color, contrast, and luminance. To achieve this, the retina has evolved specialized and unique synapse types. These include the ribbon synapses of photoreceptors and bipolar cells, the dendritic synapses of amacrine and horizontal cells, and unconventional synaptic feedback from horizontal cells to photoreceptors. We review these unique synapses in the retina with a focus on the presynaptic molecules and physiological properties that shape their capabilities.
Collapse
Affiliation(s)
- Wallace B Thoreson
- 1Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; ; https://orcid.org/0000-0001-7104-042X
| | - David Zenisek
- 2Departments of Cellular and Molecular Physiology, Ophthalmology and Visual Sciences, and Neuroscience, Yale University, New Haven, Connecticut, USA; ; https://orcid.org/0000-0001-6052-0348
| |
Collapse
|
5
|
Dittrich A, Ramesh G, Jung M, Schmitz F. Rabconnectin-3α/DMXL2 Is Locally Enriched at the Synaptic Ribbon of Rod Photoreceptor Synapses. Cells 2023; 12:1665. [PMID: 37371135 DOI: 10.3390/cells12121665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Ribbon synapses reliably transmit synaptic signals over a broad signalling range. Rod photoreceptor ribbon synapses are capable of transmitting signals generated by the absorption of single photons. The high precision of ribbon synapses emphasizes the need for particularly efficient signalling mechanisms. Synaptic ribbons are presynaptic specializations of ribbon synapses and are anchored to the active zone. Synaptic ribbons bind many synaptic vesicles that are delivered to the active zone for continuous and faithful signalling. In the present study we demonstrate with independent antibodies at the light- and electron microscopic level that rabconnectin-3α (RC3α)-alternative name Dmx-like 2 (DMXL2)-is localized to the synaptic ribbons of rod photoreceptor synapses in the mouse retina. In the brain, RC3α-containing complexes are known to interact with important components of synaptic vesicles, including Rab3-activating/inactivating enzymes, priming proteins and the vesicular H+-ATPase that acidifies the synaptic vesicle lumen to promote full neurotransmitter loading. The association of RC3α/DMXL2 with rod synaptic ribbons of the mouse retina could enable these structures to deliver only fully signalling-competent synaptic vesicles to the active zone thus contributing to reliable synaptic communication.
Collapse
Affiliation(s)
- Alina Dittrich
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Girish Ramesh
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
- Institute of Biophysics, Saarland University, 66421 Homburg, Germany
| | - Martin Jung
- Institute of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| |
Collapse
|