1
|
Takeuchi R, Nomura T, Yaguchi M, Kuwahara N, Amino Y, Taguchi C, Suzuki I, Suzuki H, Nagashima T, Arikawa K, Okada Y, Nomoto T, Hiratsuka K. Cyclosporine A causes gingival overgrowth via reduced G1 cell cycle arrest in gingival fibroblasts. PLoS One 2024; 19:e0309189. [PMID: 39705288 DOI: 10.1371/journal.pone.0309189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 12/22/2024] Open
Abstract
Gingival overgrowth caused by cyclosporine A is due to increased fibroblast proliferation in gingival tissues. Cell cycle system balances proliferation and anti-proliferation of gingival fibroblasts and plays a role in the maintenance of its population in gingival tissues. When cells detect and respond to abnormalities (e.g. DNA damage), cell cycle progression is arrested in the G1 phase until the completion of damage restoration. In this study, we investigated the effects of cyclosporine A on G1 cell cycle arrest and on its regulators in gingival fibroblasts to clarify the mechanism of cyclosporine A-induced gingival overgrowth. Human gingival fibroblasts from healthy donors were cultured to semi-confluence and were then treated with or without 200 ng/mL (166 nM) cyclosporine A in D-MEM with 2% fetal bovine serum. Cell proliferation was assessed by counting total cell numbers. The distribution of cell cycle phases was assessed using flow cytometric analysis. The levels of mRNA and protein expression for cell cycle regulators were quantified using reverse transcription-quantitative PCR and western blot analysis, respectively. Treatment with cyclosporine A markedly increased cell proliferation, inhibited G1 cell cycle arrest, significantly increased CDC25A and CYCLIN E1 mRNA expression levels, significantly decreased P21, SMAD3 and SMAD4 mRNA expression levels, significantly upregulated the protein expression levels of CDC25A, CYCLIN E1, pCDK2 and pRB1 and significantly downregulated the protein expression levels of P21, SMAD3 and SMAD4. Treatment with cyclosporine A also increased MYC and ATM mRNA expression levels and decreased CDK2, ATR, P27, P53 and RB1 mRNA expression levels but not significantly. These results demonstrate that cyclosporine A causes gingival overgrowth due to the following mechanism in gingival fibroblasts: cyclosporine A increases levels of phospho-CDK2 and CYCLIN E1 by upregulating CDC25A and downregulating P21 with the downregulation of SMAD3 and SMAD4, which results in the inhibition of G1 cell cycle arrest.
Collapse
Affiliation(s)
- Reiri Takeuchi
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Takatoshi Nomura
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Manabu Yaguchi
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Noriko Kuwahara
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yuta Amino
- Department of Oral Implantology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Chieko Taguchi
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Itaru Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Haruka Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Teruaki Nagashima
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Department of Community Oral Health, Nihon University Graduate School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Kazumune Arikawa
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yuichiro Okada
- Department of Histology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Takato Nomoto
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
2
|
Takeuchi R, Kuwahara N, Amino Y, Hayashi S, Taguchi C, Suzuki I, Suzuki H, Nagashima T, Arikawa K, Okada Y, Nomoto T, Hiratsuka K. Cyclosporine A Causes Gingival Overgrowth by Promoting Entry into the S Phase at the G1/S Cell Cycle Checkpoint in Gingival Fibroblasts Exposed to Lipopolysaccharide. Diseases 2024; 12:322. [PMID: 39727652 DOI: 10.3390/diseases12120322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES Cyclosporine A promotes gingival fibrosis by enhancing the proliferation of gingival fibroblasts, leading to gingival overgrowth. The population of gingival fibroblasts is regulated by cell cycle machinery, which balances cell growth and inhibition. Cells that detect DNA damage pause at the G1/S checkpoint to repair the damage instead of progressing to the S phase. Previous studies have linked drug-induced gingival overgrowth to the response of fibroblasts to lipopolysaccharide (LPS) and cyclosporine A. This research investigates the effects of cyclosporine A on the G1/S checkpoint and its mediators in LPS-treated gingival fibroblasts to clarify the mechanisms behind cyclosporine-A-induced gingival overgrowth. METHODS Semi-confluent human gingival fibroblasts were treated with LPS or cyclosporine A in DMEM. Cell proliferation was evaluated by counting the total number of cells. The distribution of the cell cycle phases was analyzed using flow cytometry. Additionally, the expression levels of mRNAs and proteins related to cell cycle regulators were quantified by reverse-transcription quantitative PCR and Western blotting, respectively. RESULTS Cyclosporine A treatment significantly enhanced cell proliferation and the G1-S cell cycle transition. It increased the mRNA levels of CDC25A and CYCLIN D while decreasing those of RB1, SMAD3, and SMAD4. Additionally, it upregulated the protein levels of CDC25A, CYCLIN D, CDK4, CDK6, and pRB and downregulated the protein levels of SMAD3 and SMAD4. CONCLUSIONS Gingival overgrowth induced by cyclosporine A could be attributed to these alterations.
Collapse
Affiliation(s)
- Reiri Takeuchi
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Noriko Kuwahara
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Yuta Amino
- Department of Oral Implantology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Sachiyo Hayashi
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Chieko Taguchi
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Itaru Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Haruka Suzuki
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Teruaki Nagashima
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
- Department of Community Oral Health, Nihon University Graduate School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Kazumune Arikawa
- Department of Community Oral Health, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Yuichiro Okada
- Department of Histology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Takato Nomoto
- Department of Special Needs Dentistry, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo 271-8587, Chiba, Japan
| |
Collapse
|
3
|
Chapple ILC, Hirschfeld J, Cockwell P, Dietrich T, Sharma P. Interplay between periodontitis and chronic kidney disease. Nat Rev Nephrol 2024:10.1038/s41581-024-00910-5. [PMID: 39658571 DOI: 10.1038/s41581-024-00910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Periodontitis is a ubiquitous chronic inflammatory disease affecting the supporting tissues of the teeth and is a major cause of multiple tooth loss. Despite being preventable, periodontitis and dental caries are responsible for more years lost to disability than any other human condition. The most severe form of periodontitis affects 1 billion individuals, and its prevalence is increasing globally. Periodontitis arises from a dysregulated and hyperactive inflammatory response to dysbiosis in the periodontal microbiome. This response has systemic effects associated with premature mortality and elevated risk of several systemic non-communicable diseases (NCDs), including atheromatous cardiovascular disease, type 2 diabetes and chronic kidney disease (CKD). This risk association between periodontitis and NCDs is independent of their shared common risk factors, suggesting that periodontitis is a non-traditional risk factor for NCDs such as CKD. As periodontitis progresses, the immune cells and mediators underpinning its pathophysiology leak into the systemic circulation through the ulcerated oral mucosal lining, inducing in a systemic inflammatory profile that closely mirrors that observed in patients with CKD. The relationship between periodontitis and CKD seems to be bi-directional, but large-scale intervention studies are required to clarify causality and could lead to new care pathways for managing each condition as an exposure for the other.
Collapse
Affiliation(s)
- Iain L C Chapple
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK.
- NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK.
| | - Josefine Hirschfeld
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK
| | - Paul Cockwell
- Department of Nephrology, University Hospital Birmingham, Birmingham, UK
| | - Thomas Dietrich
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK
| | - Praveen Sharma
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK
| |
Collapse
|
4
|
Palmieri A, Pellati A, Lauritano D, Lucchese A, Carinci F, Scapoli L, Martinelli M. Drugs That Induce Gingival Overgrowth Drive the Pro-Inflammatory Polarization of Macrophages In Vitro. Int J Mol Sci 2024; 25:11441. [PMID: 39518992 PMCID: PMC11546752 DOI: 10.3390/ijms252111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Several attempts have been made to elucidate the pathogenesis of drug-induced gingival overgrowth (DIGO), which is triggered by the chronic use of certain drugs that fall into three main categories: anticonvulsants, immunosuppressants, and calcium channel blockers. Previous research suggests that cytokines and impaired cellular functions play a role in DIGO. Of particular interest are macrophages, immune cells that can switch between M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes in response to exogenous signals and stimuli. An imbalance between M1 and M2 macrophage populations may underlie DIGO. M1 may contribute to the initial tissue damage in DIGO, while M2 may then attempt to repair the damage with anti-inflammatory mechanisms. To test the hypothesis that drugs associated with DIGO could influence macrophage polarization, human monocytes (precursors of macrophages) were induced to differentiate into M0-naïve macrophages and then exposed to drugs: diphenylhydantoin, gabapentin, mycophenolate, and amlodipine. Quantitative real-time PCR amplification was used to measure the expression of specific genes associated with macrophage polarization. All of the drugs tested induced M0 macrophages to overexpress genes typical of the M1 phenotype, such as CCL5, CXCL10, and IDO1. This investigation provides the first evidence of a link between drugs that cause DIGO and M1 pro-inflammatory macrophage polarization. The knowledge gained from this research could be valuable for future DIGO treatment strategies.
Collapse
Affiliation(s)
- Annalisa Palmieri
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (L.S.); (M.M.)
| | - Agnese Pellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (A.P.); (D.L.); (F.C.)
| | - Dorina Lauritano
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (A.P.); (D.L.); (F.C.)
| | - Alberta Lucchese
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesco Carinci
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (A.P.); (D.L.); (F.C.)
| | - Luca Scapoli
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (L.S.); (M.M.)
| | - Marcella Martinelli
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.P.); (L.S.); (M.M.)
| |
Collapse
|
5
|
Sharma M, Sarode SC, Sarode G, Radhakrishnan R. Areca nut-induced oral fibrosis - Reassessing the biology of oral submucous fibrosis. J Oral Biosci 2024; 66:320-328. [PMID: 38395254 DOI: 10.1016/j.job.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Oral submucous fibrosis (OSF) is a pathological condition characterized by excessive tissue healing resulting from physical, chemical, or mechanical trauma. Notably, areca nut consumption significantly contributes to the development of oral fibrosis. The current definition of OSF, recognizing its potential for malignant transformation, necessitates a more comprehensive understanding of its pathophysiology and etiology. HIGHLIGHTS Areca nut induces fibrotic pathways by upregulating inflammatory cytokines such as TGF-β and expressing additional cytokines. Moreover, it triggers the conversion of fibroblasts to myofibroblasts, characterized by α-SMA and γSMA expression, resulting in accelerated collagen production. Arecoline, a component of areca nut, has been shown to elevate levels of reactive oxygen species, upregulate the expression of various cytokines, and activate specific signaling pathways (MEK, COX2, PI3K), all contributing to fibrosis. Therefore, we propose redefining OSF as "Areca nut-induced oral fibrosis" (AIOF) to align with current epistemology, emphasizing its distinctive association with areca nut consumption. The refined definition enhances our ability to develop targeted interventions, thus contributing to more effective prevention and treatment strategies for oral submucous fibrosis worldwide. CONCLUSION Arecoline plays a crucial role as a mediator in fibrosis development, contributing to extracellular matrix accumulation in OSF. The re-evaluation of OSF as AIOF offers a more accurate representation of the condition. This nuanced perspective is essential for distinguishing AIOF from other forms of oral fibrosis and advancing our understanding of the disease's pathophysiology.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Oral Pathology, Faculty of Dental Sciences, SGT University, Gurugram, Haryana, 122505, India.
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, 18, Maharashtra, India.
| | - Gargi Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri, Pune, 18, Maharashtra, India.
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India; Academic Unit of Oral Medicine and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, S10 2TA, UK.
| |
Collapse
|
6
|
Dhalla N, Gopal L, Palwankar P. Drug induced gingival enlargement - phenytoin: an overview and case report. J Surg Case Rep 2024; 2024:rjae304. [PMID: 38812578 PMCID: PMC11132884 DOI: 10.1093/jscr/rjae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Gingival enlargement is a side effect of several different medication, including immunosuppressants, anticonvulsants, and calcium channel blockers. It is an inflammatory response that starts when plaque and calculus build up on the tooth surface. The most prevalent long-term neurological condition affecting people is epilepsy. In affluent nations, the prevalence of epilepsy is ~ 1%, whereas in less developed countries, it may >2%. The preferred medication for the condition, phenytoin, has major side effects include gingival enlargement. In addition to being visually disfiguring, this enlargement frequently affects speech, chewing and eating. Furthermore, those with poor dental hygiene, causes disabilities with motor coordination and muscular limitations leading to mental disability and physical impairments are more prone to periodontal disease. This article enlightened the mechanism of drug induced gingival enlargement clinically, microbiologically, and surgically.
Collapse
Affiliation(s)
- Nipun Dhalla
- Department of Periodontology, Manav Rachna Dental College, SDS, MRIIRS, Q Block, Faridabad 121001, Haryana, India
| | - Lipika Gopal
- Department of Periodontology, Manav Rachna Dental College, SDS, MRIIRS, Q Block, Faridabad 121001, Haryana, India
| | - Pooja Palwankar
- Department of Periodontology, Manav Rachna Dental College, SDS, MRIIRS, Q Block, Faridabad 121001, Haryana, India
| |
Collapse
|
7
|
Naik A, Chitturi P, Nguyen J, Leask A. The yes-associated protein-1 (YAP1) inhibitor celastrol suppresses the ability of transforming growth factor β to activate human gingival fibroblasts. Arch Oral Biol 2024; 160:105910. [PMID: 38364717 DOI: 10.1016/j.archoralbio.2024.105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE To determine whether celastrol, an inhibitor of the mechanosensitive transcriptional cofactor yes-associated protein-1 (YAP1), impairs the ability of TGFβ1 to stimulate fibrogenic activity in human gingival fibroblast cell line. DESIGN Human gingival fibroblasts were pre-treated with celastrol or DMSO followed by stimulation with or without TGFβ1 (4 ng/ml). We then utilized bulk RNA sequencing (RNAseq), real-time polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, cell proliferation assays to determine if celastrol impaired TGFβ1-induced responses in a human gingival fibroblast cell line. RESULTS Celastrol impaired the ability of TGFβ1 to induce expression of the profibrotic marker and mediator CCN2. Bulk RNAseq analysis of gingival fibroblasts treated with TGFβ1, in the presence or absence of celastrol, revealed that celastrol impaired the ability of TGFβ1 to induce mRNA expression of genes within extracellular matrix, wound healing, focal adhesion and cytokine/Wnt signaling clusters. RT-PCR analysis of extracted RNAs confirmed that celastrol antagonized the ability of TGFβ1 to induce expression of genes anticipated to contribute to fibrotic responses. Celastrol also reduced gingival fibroblast proliferation, and YAP1 nuclear localization in response to TGFβ1. CONCLUSION YAP1 inhibitors such as celastrol could be used to impair pro-fibrotic responses to TGFβ1 in human gingival fibroblasts.
Collapse
Affiliation(s)
- Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - John Nguyen
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
8
|
Sun S, Pan Y, Zhang J, Jiang Y. Nifedipine-Influenced Enlargement of the Masticatory Mucosa in an Elderly Edentulous Patient: A Rare Case Report with a Two-Year Follow-Up. Case Rep Dent 2024; 2024:6889574. [PMID: 38576511 PMCID: PMC10994707 DOI: 10.1155/2024/6889574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/02/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-influenced gingival enlargement is a common side effect associated with certain medications, particularly calcium channel blockers like nifedipine, which has been extensively documented. However, the occurrence of nifedipine-influenced masticatory mucosa overgrowth in edentulous patients is rare. Here, we present a case of nifedipine-influenced mucosal enlargement persisting in a 67-year-old edentulous patient 3 months after the extraction of all his teeth. The patient underwent flap surgery and alveoloplasty to excise the overgrown tissue, followed by complete denture restoration. The antihypertensive medication was replaced with valsartan. A 2-year follow-up revealed no recurrence of overgrowth, indicating the effectiveness of this management strategy for such clinical situation.
Collapse
Affiliation(s)
- Shoufu Sun
- Department of Stomatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Yufan Pan
- Xianxia Community Care Center, 140 Furong River Road, Shanghai 200336, China
| | - Jichun Zhang
- Department of Stomatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Yunan Jiang
- Department of Stomatology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| |
Collapse
|
9
|
Wang Q, Ji C, Smith P, McCulloch CA. Impact of TRP Channels on Extracellular Matrix Remodeling: Focus on TRPV4 and Collagen. Int J Mol Sci 2024; 25:3566. [PMID: 38612378 PMCID: PMC11012046 DOI: 10.3390/ijms25073566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Disturbed remodeling of the extracellular matrix (ECM) is frequently observed in several high-prevalence pathologies that include fibrotic diseases of organs such as the heart, lung, periodontium, liver, and the stiffening of the ECM surrounding invasive cancers. In many of these lesions, matrix remodeling mediated by fibroblasts is dysregulated, in part by alterations to the regulatory and effector systems that synthesize and degrade collagen, and by alterations to the functions of the integrin-based adhesions that normally mediate mechanical remodeling of collagen fibrils. Cell-matrix adhesions containing collagen-binding integrins are enriched with regulatory and effector systems that initiate localized remodeling of pericellular collagen fibrils to maintain ECM homeostasis. A large cadre of regulatory molecules is enriched in cell-matrix adhesions that affect ECM remodeling through synthesis, degradation, and contraction of collagen fibrils. One of these regulatory molecules is Transient Receptor Potential Vanilloid-type 4 (TRPV4), a mechanically sensitive, Ca2+-permeable plasma membrane channel that regulates collagen remodeling. The gating of Ca2+ across the plasma membrane by TRPV4 and the consequent generation of intracellular Ca2+ signals affect several processes that determine the structural and mechanical properties of collagen-rich ECM. These processes include the synthesis of new collagen fibrils, tractional remodeling by contractile forces, and collagenolysis. While the specific mechanisms by which TRPV4 contributes to matrix remodeling are not well-defined, it is known that TRPV4 is activated by mechanical forces transmitted through collagen adhesion receptors. Here, we consider how TRPV4 expression and function contribute to physiological and pathological collagen remodeling and are associated with collagen adhesions. Over the long-term, an improved understanding of how TRPV4 regulates collagen remodeling could pave the way for new approaches to manage fibrotic lesions.
Collapse
Affiliation(s)
- Qin Wang
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
| | - Chenfan Ji
- Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Patricio Smith
- Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8320165, Chile;
| | | |
Collapse
|
10
|
Imagawa M, Shinjo T, Sato K, Kawakami K, Zeze T, Nishimura Y, Toyoda M, Chen S, Ryo N, Ahmed AK, Iwashita M, Yamashita A, Fukuda T, Sanui T, Nishimura F. Epithelial-to-mesenchymal transition, inflammation, subsequent collagen production, and reduced proteinase expression cooperatively contribute to cyclosporin-A-induced gingival overgrowth development. Front Physiol 2023; 14:1298813. [PMID: 38156070 PMCID: PMC10753830 DOI: 10.3389/fphys.2023.1298813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Drug-induced gingival overgrowth (DIGO), induced by certain immunosuppressive drugs, antihypertensive agents, and antiepileptic drugs, may contribute to the formation of deeper periodontal pockets and intractableness in periodontitis. To date, multiple factors such as enhanced matrix production, inflammation, and reduced matrix degradation might be involved in the pathogenesis of DIGO. We have previously reported that SPOCK-1, a heparan sulfate proteoglycan, could affect gingival thickening by promoting epithelial-to-mesenchymal transition (EMT) in gingival keratinocytes. However, few studies have investigated whether a combination of these factors enhances the DIGO phenotype in animal models. Therefore, we investigated whether SPOCK-1, periodontal inflammation, and cyclosporin-A (CsA) could cooperatively promote gingival overgrowth. We first confirmed that Spock-1 overexpressing (Spock1-Tg) mice showed significantly thicker gingiva and greater alveolar bone loss than WT mice in response to ligature-induced experimental periodontitis. DIGO was induced by the combination of CsA administration and experimental periodontitis was significantly enhanced in Spock1-Tg mice compared to that in WT mice. Ligature-induced alveolar bone loss in CsA-treated Spock1-Tg mice was also significantly greater than that in CsA-treated WT mice, while being accompanied by an increase in Rankl and Col1a1 levels and a reduction in matrix metalloprotease expression. Lastly, SPOCK-1 promoted RANKL-induced osteoclast differentiation in both human peripheral blood mononuclear cells and murine macrophages, while peritoneal macrophages from Spock1-Tg mice showed less TNFα and IL-1β secretion than WT mice in response to Escherichia coli lipopolysaccharide. These results suggest that EMT, periodontal inflammation, and subsequent enhanced collagen production and reduced proteinase production contribute to CsA-induced DIGO pathogenesis.
Collapse
Affiliation(s)
- Mio Imagawa
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takanori Shinjo
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kohei Sato
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Kentaro Kawakami
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tatsuro Zeze
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuki Nishimura
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masaaki Toyoda
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shuang Chen
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Naoaki Ryo
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Al-kafee Ahmed
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Misaki Iwashita
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akiko Yamashita
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Terukazu Sanui
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fusanori Nishimura
- Section of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Bonifacio MA, Mariggiò MA. New Trends in Pathology: From Cell Morphology to Molecular Medicine. Int J Mol Sci 2023; 24:11743. [PMID: 37511502 PMCID: PMC10380677 DOI: 10.3390/ijms241411743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
After Rudolf Virchow's pioneering works, technological advances boosted the scientific interest in this research field, which nowadays is still far from extinguished [...].
Collapse
Affiliation(s)
- Maria Addolorata Bonifacio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Maria Addolorata Mariggiò
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| |
Collapse
|
12
|
Zisis V, Andreadis D, Karpouzi R, Karadagli T, Poulopoulos A. Cyclosporine-Induced Gingival Hyperplasia in a Patient With Lichen Planopilaris: Misfortunes Never Come Singly! Cureus 2023; 15:e42531. [PMID: 37637542 PMCID: PMC10458405 DOI: 10.7759/cureus.42531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Cyclosporine A constitutes an immunosuppressive medication administered against various autoimmune and autoinflammatory disorders as well as against graft versus host disease. Its most well-known oral adverse effect is gingival hyperplasia. The aim of this study is to report a persistent case of a patient with lichen planopilaris with alopecia treated with cyclosporine leading to the manifestation of gingival hypertrophy. A female patient aged 38 years old was referred to the Department of Oral Medicine/Pathology, Dental School, Aristotle University of Thessaloniki, Greece complaining about gum bleeding, halitosis, and a persistent gingival enlargement, which appeared two months ago. According to her medical history, lichen planopilaris was diagnosed six months ago and was initially treated for 40 days with methylprednisolone 16 mg twice per day without improvement, and was replaced by cyclosporine A 200 mg per day. The clinical oral examination revealed gingival enlargement at areas #34-43, 22-23, and 25-27 without any lesion of lichen planus. The level of oral hygiene was satisfactory, with a limited amount of tartar and plaque. Bleeding on probing was also noticed, and pseudopockets of 5 mm were observed. The serum levels of cyclosporine were 473,60 μg/L, with a normal range, regarding repercussions in the oral cavity, up to 200 μg/L. A decrease of cyclosporine dosage to 150 mg was performed. After 15 days, the clinical appearance significantly improved, and a biopsy was done. The microscopic findings showed mild ulceration and inflammatory infiltrates, together with the abundant presence of collagen stroma, without any sign of malignancy. According to the literature, the high dosage of cyclosporine, its relevant high serum levels, and the presence of plaque were responsible for the manifestation of gingival hypertrophy.
Collapse
Affiliation(s)
- Vasileios Zisis
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Dimitrios Andreadis
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Rafaelia Karpouzi
- Prosthodontics, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Theodora Karadagli
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | |
Collapse
|