1
|
Jiang L, Yang X, Gao X, Yang H, Ma S, Huang S, Zhu J, Zhou H, Li X, Gu X, Zhou H, Liang Z, Yang A, Huang Y, Xiao M. Multiomics Analyses Reveal the Dual Role of Flavonoids in Pigmentation and Abiotic Stress Tolerance of Soybean Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3231-3243. [PMID: 38303105 DOI: 10.1021/acs.jafc.3c08202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The color of the seed coat has great diversity and is regarded as a biomarker of metabolic variations. Here we isolated a soybean variant (BLK) from a population of recombinant inbred lines with a black seed coat, while its sibling plants have yellow seed coats (YL). The BLK and YL plants showed no obvious differences in vegetative growth and seed weight. However, the BLK seeds had higher anthocyanins and flavonoids level and showed tolerance to various abiotic stresses including herbicide, oxidation, salt, and alkalinity during germination. Integrated metabolomic and transcriptomic analyses revealed that the upregulation of biosynthetic genes probably contributed to the overaccumulation of flavonoids in BLK seeds. The transient expression of those biosynthetic genes in soybean root hairs increased the levels of total flavonoids or anthocyanins. Our study revealed the molecular basis of flavonoid accumulation in soybean seeds, leveraging genetic engineering for both nutritious and stress-tolerant soybean germplasm.
Collapse
Affiliation(s)
- Ling Jiang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
- Yuelushan Laboratory, Changsha 410128, People's Republic of China
| | - Xiaofeng Yang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Xiewang Gao
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Hui Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Shumei Ma
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Shan Huang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Jianyu Zhu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Hong Zhou
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Xiaohong Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Xiaoyan Gu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, People's Republic of China
| | - Hongming Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Zeya Liang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Antong Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Yong Huang
- Yuelushan Laboratory, Changsha 410128, People's Republic of China
- Key Laboratory of Hunan Province on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, People's Republic of China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Mu Xiao
- Yuelushan Laboratory, Changsha 410128, People's Republic of China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
- Key Laboratory of Hunan Province on Crop Epigenetic Regulation and Development, Hunan Agricultural University, Changsha 410128, People's Republic of China
| |
Collapse
|
2
|
Wen S, Zhou C, Tian C, Yang N, Zhang C, Zheng A, Chen Y, Lai Z, Guo Y. Identification and Validation of the miR156 Family Involved in Drought Responses and Tolerance in Tea Plants ( Camellia sinensis (L.) O. Kuntze). PLANTS (BASEL, SWITZERLAND) 2024; 13:201. [PMID: 38256754 PMCID: PMC10819883 DOI: 10.3390/plants13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The microRNA156 (miR156) family, one of the first miRNA families discovered in plants, plays various important roles in plant growth and resistance to various abiotic stresses. Previously, miR156s were shown to respond to drought stress, but miR156s in tea plants (Camellia sinensis (L.) O. Kuntze) have not been comprehensively identified and analyzed. Herein, we identify 47 mature sequences and 28 precursor sequences in tea plants. Our evolutionary analysis and multiple sequence alignment revealed that csn-miR156s were highly conserved during evolution and that the rates of the csn-miR156 members' evolution were different. The precursor sequences formed typical and stable stem-loop structures. The prediction of cis-acting elements in the CsMIR156s promoter region showed that the CsMIR156s had diverse cis-acting elements; of these, 12 CsMIR156s were found to be drought-responsive elements. The results of reverse transcription quantitative PCR (RT-qPCR) testing showed that csn-miR156 family members respond to drought and demonstrate different expression patterns under the conditions of drought stress. This suggests that csn-miR156 family members may be significantly involved in the response of tea plants to drought stress. Csn-miR156f-2-5p knockdown significantly reduced the Fv/Fm value and chlorophyll content and led to the accumulation of more-reactive oxygen species and proline compared with the control. The results of target gene prediction showed that csn-miR156f-2-5p targeted SQUAMOSA promoter binding protein-like (SPL) genes. Further analyses showed that CsSPL14 was targeted by csn-miR156f-2-5p, as confirmed through RT-qPCR, 5' RLM-RACE, and antisense oligonucleotide validation. Our results demonstrate that csn-miR156f-2-5p and CsSPL14 are involved in drought response and represent a new strategy for increasing drought tolerance via the breeding of tea plants.
Collapse
Affiliation(s)
- Shengjing Wen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Niannian Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Anru Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Yixing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (C.Z.); (C.T.); (N.Y.); (C.Z.); (A.Z.); (Y.C.); (Z.L.)
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, Quanzhou 362400, China
| |
Collapse
|
3
|
Madhuvanthi CK, Muthulakshmi E, Ghosh Dasgupta M. Integrated mRNA and small RNA sequencing reveals post-transcriptional regulation of the sesquiterpene pathway in Santalum album L. (Indian sandalwood). 3 Biotech 2023; 13:387. [PMID: 37942052 PMCID: PMC10628100 DOI: 10.1007/s13205-023-03816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023] Open
Abstract
Key message In sandalwood, negative pattern of regulation by miRNAs was documented in key genes from the sesquiterpene pathway, with cytochrome P450 reductase showing maximum miRNA targets, followed by sesquisabianene synthase 1. Abstract A comprehensive knowledge of the molecular regulation of sesquiterpene biosynthetic pathway through transcriptomic studies is well established in Santalum album (Indian Sandalwood). However, the post-transcriptional regulation of the genes regulating the pathway is still elusive in this genus. In the present study, an integrated analysis of wood transcriptome and small RNA datasets was conducted to investigate the role of miRNAs in regulating the expression of transcripts involved in santalol production mediated by the sesquiterpene biosynthesis pathway. A total of 24,237 transcripts were annotated from the wood transcriptome, and 45 transcripts were mapped to the sesquiterpenoid pathway. Small RNA data analysis identified 257 conserved miRNAs belonging to 50 families and 7 novel putative miRNAs. Sa-miR156, Sa-miR396, Sa-miR166, and Sa-miR319 had the most number of members among the miRNA families. An integrated analysis predicted 69 miRNA members belonging to 12 families that targeted 12 transcripts from the sesquiterpene pathway, with a maximum of 24 miRNAs regulating cytochrome P450 reductase, followed by sesquisabianene synthase 1, which was targeted by 23 miRNAs. Validation of miRNA-mRNA interaction by qRT-PCR revealed a negative pattern of regulation in six miRNA-mRNA target pairs across wood tissues sourced from four genotypes. The present study provides the first crucial insight into the post-transcriptional regulation of the sesquiterpene pathway genes in the genus Santalum and opens up a new perspective in metabolite engineering for enhanced essential oil production in sandalwood. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03816-4.
Collapse
Affiliation(s)
- Chandramouli K. Madhuvanthi
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu 641002 India
| | - Eswaran Muthulakshmi
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu 641002 India
| | - Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology and Cytogenetics, ICFRE-Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, Tamil Nadu 641002 India
| |
Collapse
|
4
|
Yu Y, Wang P, Wan H, Wang Y, Hu H, Ni Z. The Gma-miR394a/GmFBX176 module is involved in regulating the soybean (Glycine max L.) response to drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111879. [PMID: 37778470 DOI: 10.1016/j.plantsci.2023.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Drought seriously affects the yield and quality of soybean. Previous studies have shown that the gma-miR394a/GmFBX176 module regulates the response of Arabidopsis to drought stress. However, whether the gma-miR394a/GmFBX176 module is involved in the regulation of the soybean drought stress response remains unclear. Here, the function of the gma-miR394a/GmFBX176 module in the soybean drought stress response was evaluated. In soybean hairy roots, drought stress induced the transcription of gma-miR394a and inhibited the transcription of GmFBX176. GUS histochemical staining showed that transgenic GmFBX176p:GUS soybean hairy root staining was weak and that GUS transcript levels decreased under drought stress. A transient expression experiment in tobacco showed that gma-miR394a inhibited GmFBX176 transcription. Under drought stress, composite soybean plants overexpressing gma-miR394a showed increased drought resistance compared with control K599 composite soybean plants (K599); their survival rate and peroxidase activity were higher than those of K599, and their malondialdehyde content was lower. In contrast, composite soybean plants overexpressing GmFBX176m3 (gma-miR394a complement site mutation) presented lower drought resistance than K599 plants. Transcriptomic sequencing showed that the gma-miR394a/GmFBX176 module affected the transcript levels of stress response genes and transcription factors. These results indicate that the gma-miR394a/GmFBX176 module can be used to improve the drought resistance of soybean.
Collapse
Affiliation(s)
- Yuehua Yu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Ping Wang
- College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Huina Wan
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Yi Wang
- College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Hao Hu
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Zhiyong Ni
- College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, PR China.
| |
Collapse
|
5
|
Yuan J, Wang X, Qu S, Shen T, Li M, Zhu L. The roles of miR156 in abiotic and biotic stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108150. [PMID: 37922645 DOI: 10.1016/j.plaphy.2023.108150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs), known as a kind of non-coding RNA, can negatively regulate its target genes. To date, the roles of various miRNAs in plant development and resistance to abiotic and biotic stresses have been widely explored. The present review summarized and discussed the functions of miR156 or miR156-SPL module in abiotic and biotic stresses, such as drought, salt, heat, cold stress, UV-B radiation, heavy mental hazards, nutritional starvation, as well as plant viruses, plant diseases, etc. Based on this, the regulation of miR156-involved stress tolerance was better understood, thus, it would be much easier for plant biologists to carry out suitable strategies to help plants suffer from unfavorable living environments.
Collapse
Affiliation(s)
- Jing Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengtao Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|