1
|
Mastoor Y, Murphy E, Roman B. Mechanisms of postischemic cardiac death and protection following myocardial injury. J Clin Invest 2025; 135:e184134. [PMID: 39744953 DOI: 10.1172/jci184134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Acute myocardial infarction (MI) is a leading cause of death worldwide. Although with current treatment, acute mortality from MI is low, the damage and remodeling associated with MI are responsible for subsequent heart failure. Reducing cell death associated with acute MI would decrease the mortality associated with heart failure. Despite considerable study, the precise mechanism by which ischemia and reperfusion (I/R) trigger cell death is still not fully understood. In this Review, we summarize the changes that occur during I/R injury, with emphasis on those that might initiate cell death, such as calcium overload and oxidative stress. We review cell-death pathways and pathway crosstalk and discuss cardioprotective approaches in order to provide insight into mechanisms that could be targeted with therapeutic interventions. Finally, we review cardioprotective clinical trials, with a focus on possible reasons why they were not successful. Cardioprotection has largely focused on inhibiting a single cell-death pathway or one death-trigger mechanism (calcium or ROS). In treatment of other diseases, such as cancer, the benefit of targeting multiple pathways with a "drug cocktail" approach has been demonstrated. Given the crosstalk between cell-death pathways, targeting multiple cardiac death mechanisms should be considered.
Collapse
|
2
|
Szabados T, Makkos A, Ágg B, Benczik B, Brenner GG, Szabó M, Váradi B, Vörös I, Gömöri K, Varga ZV, Görbe A, Bencsik P, Ferdinandy P. Pharmacokinetics and cardioprotective efficacy of intravenous miR-125b* microRNA mimic in a mouse model of acute myocardial infarction. Br J Pharmacol 2025; 182:432-450. [PMID: 39472767 DOI: 10.1111/bph.17345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND AND PURPOSE MicroRNA (miRNA) therapy is a promising approach to induce cardioprotection. We have previously identified cardiac microRNA-125b* (microRNA-125b-2-3p; miR-125b*) as a potential cardioprotective miRNA, termed ProtectomiR. We aimed to characterize the pharmacokinetics and pharmacodynamics, and the effect of miR-125b* mimic on infarct size using an in vivo mouse model. EXPERIMENTAL APPROACH To characterize the pharmacokinetics properties of miR-125b* mimic, a single injection of 10-μg miR-125b* mimic or its scramble miRNA control, or vehicle i.v. was given to C57BL/6 mice. MiR-125b* expression was measured from plasma, heart, kidney and liver samples. Effect of miR-125b* on area at risk and infarct size was assessed after 45-min coronary occlusion, followed by 24-h reperfusion; 10-μg miR-125b* mimic or 10-μg non-targeting miRNA mimic control or vehicle were administered via the right jugular vein at 10th mins of coronary occlusion. To assess molecular mechanism involved in cardioprotection, expression of mRNA targets of miR-125b* were measured from ventricular myocardium at 1, 2, 4, 8 or 24 h post-treatment using quantitative real time polymerase chain reaction. KEY RESULTS MiR-125b* expression was markedly increased in plasma and myocardium 1 h, and in the liver 2h after treatment. Infarct size was significantly reduced after miR-125b* mimic treatment when compared to the vehicle. The expression of Ccna2, Eef2k and Cacnb2 target mRNAs was significantly reduced 8 h after injection of miR-125b* mimic. CONCLUSION AND IMPLICATIONS This is the first demonstration of pharmacokinetic and molecular pharmacodynamic properties as well as the cardioprotective effect of miR-125b* mimic in vivo. LINKED ARTICLES This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - András Makkos
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Gábor G Brenner
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Márta Szabó
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Barnabás Váradi
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Imre Vörös
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Péter Bencsik
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary
- Cardiometabolic and HUN-REN-SU and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, and Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Beucher L, Gabillard-Lefort C, Baris OR, Mialet-Perez J. Monoamine oxidases: A missing link between mitochondria and inflammation in chronic diseases ? Redox Biol 2024; 77:103393. [PMID: 39405979 PMCID: PMC11525629 DOI: 10.1016/j.redox.2024.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
The role of mitochondria spans from the regulation of the oxidative phosphorylation, cell metabolism and survival/death pathways to a more recently identified function in chronic inflammation. In stress situations, mitochondria release some pro-inflammatory mediators such as ATP, cardiolipin, reactive oxygen species (ROS) or mitochondrial DNA, that are believed to participate in chronic diseases and aging. These mitochondrial Damage-Associated Molecular Patterns (mito-DAMPs) can modulate specific receptors among which TLR9, NLRP3 and cGAS-STING, triggering immune cells activation and sterile inflammation. In order to counter the development of chronic diseases, a better understanding of the underlying mechanisms of low grade inflammation induced by mito-DAMPs is needed. In this context, monoamine oxidases (MAO), the mitochondrial enzymes that degrade catecholamines and serotonin, have recently emerged as potent regulators of chronic inflammation in obesity-related disorders, cardiac diseases, cancer, rheumatoid arthritis and pulmonary diseases. The role of these enzymes in inflammation embraces their action in both immune and non-immune cells, where they regulate monoamines levels and generate toxic ROS and aldehydes, as by-products of enzymatic reaction. Here, we discuss the more recent advances on the role and mechanisms of action of MAOs in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Lise Beucher
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France
| | | | - Olivier R Baris
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France
| | - Jeanne Mialet-Perez
- Univ Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, F-49000, France.
| |
Collapse
|
4
|
Brosinsky P, Heger J, Sydykov A, Weiss A, Klatt S, Czech L, Kraut S, Schermuly RT, Schlüter KD, Schulz R. Does Cell-Type-Specific Silencing of Monoamine Oxidase B Interfere with the Development of Right Ventricle (RV) Hypertrophy or Right Ventricle Failure in Pulmonary Hypertension? Int J Mol Sci 2024; 25:6212. [PMID: 38892401 PMCID: PMC11172614 DOI: 10.3390/ijms25116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Increased mitochondrial reactive oxygen species (ROS) formation is important for the development of right ventricular (RV) hypertrophy (RVH) and failure (RVF) during pulmonary hypertension (PH). ROS molecules are produced in different compartments within the cell, with mitochondria known to produce the strongest ROS signal. Among ROS-forming mitochondrial proteins, outer-mitochondrial-membrane-located monoamine oxidases (MAOs, type A or B) are capable of degrading neurotransmitters, thereby producing large amounts of ROS. In mice, MAO-B is the dominant isoform, which is present in almost all cell types within the heart. We analyzed the effect of an inducible cardiomyocyte-specific knockout of MAO-B (cmMAO-B KO) for the development of RVH and RVF in mice. Right ventricular hypertrophy was induced by pulmonary artery banding (PAB). RV dimensions and function were measured through echocardiography. ROS production (dihydroethidium staining), protein kinase activity (PamStation device), and systemic hemodynamics (in vivo catheterization) were assessed. A significant decrease in ROS formation was measured in cmMAO-B KO mice during PAB compared to Cre-negative littermates, which was associated with reduced activity of protein kinases involved in hypertrophic growth. In contrast to littermates in which the RV was dilated and hypertrophied following PAB, RV dimensions were unaffected in response to PAB in cmMAO-B KO mice, and no decline in RV systolic function otherwise seen in littermates during PAB was measured in cmMAO-B KO mice. In conclusion, cmMAO-B KO mice are protected against RV dilatation, hypertrophy, and dysfunction following RV pressure overload compared to littermates. These results support the hypothesis that cmMAO-B is a key player in causing RV hypertrophy and failure during PH.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Disease Models, Animal
- Heart Failure/metabolism
- Heart Failure/etiology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Ventricles/pathology
- Heart Ventricles/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/pathology
- Mice, Knockout
- Monoamine Oxidase/genetics
- Monoamine Oxidase/metabolism
- Monoamine Oxidase/deficiency
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Reactive Oxygen Species/metabolism
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/pathology
Collapse
Affiliation(s)
- Paulin Brosinsky
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Jacqueline Heger
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Akylbek Sydykov
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Astrid Weiss
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Stephan Klatt
- Vascular Research Centre, Goethe Universität, 60590 Frankfurt, Germany;
| | - Laureen Czech
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Simone Kraut
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Ralph Theo Schermuly
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Klaus-Dieter Schlüter
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| |
Collapse
|
5
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
6
|
Qian L, Xu H, Yuan R, Yun W, Ma Y. Formononetin ameliorates isoproterenol induced cardiac fibrosis through improving mitochondrial dysfunction. Biomed Pharmacother 2024; 170:116000. [PMID: 38070245 DOI: 10.1016/j.biopha.2023.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Formononetin, an isoflavone compound, has been extensively researched due to its various biological activities, including a potent protective effect on the cardiovascular system. However, the impact of formononetin on cardiac fibrosis has not been investigated. In this study, C57BL/6 mice were used to establish cardiac fibrosis animal models by subcutaneous injecting of isoproterenol (ISO) and formononetin was orally administrated. The results showed that formononetin reversed ISO-induced heart stiffness revealed by early-to-atrial wave ratio (E/A ratio). Masson staining, western blot, immunohistochemistry and real-time PCR exhibited that the cardiac fibrosis and fibrosis-related proteins (collage III, fibronectin, TGF-β1, α-SMA, and vimentin) and genes (Col1a1, Col3a1, Acta2 and Tgfb1) induced by ISO were significantly suppressed by formononetin. Furthermore, by combining metabolomics and network pharmacology, we found three important targets (ALDH2, HADH, and MAOB), which are associated with mitochondrial function, were involved in the beneficial effect of formononetin. Further validation revealed that these three genes were more abundance in cardiomyocyte than in cardiac fibroblast. The mRNA expression of ALDH2 and HADH were decreased, while MOAB was increased in cardiomyocyte upon ISO treatment and these phenomena were reversed by formononetin. In addition, we investigated mitochondrial membrane potential and ROS production in cardiomyocytes, the results showed that formononetin effectively improved mitochondrial dysfunction induced by ISO. In summary, we demonstrated that formononetin via regulating the expressions of ALDH2, HADH, and MAOB in cardiomyocyte to improve mitochondrial dysfunction and alleviate β-adrenergic activation cardiac fibrosis.
Collapse
Affiliation(s)
- Lei Qian
- Department of Biochemistry and Molecular Biology, College of Basic Sciences, Dalian Medical University, Dalian 116044, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hu Xu
- Wuhu Hospital and Health Science Center, East China Normal University, Shanghai 200241, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weijing Yun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
7
|
Kaludercic N, Arusei RJ, Di Lisa F. Recent advances on the role of monoamine oxidases in cardiac pathophysiology. Basic Res Cardiol 2023; 118:41. [PMID: 37792081 PMCID: PMC10550854 DOI: 10.1007/s00395-023-01012-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Numerous physiological and pathological roles have been attributed to the formation of mitochondrial reactive oxygen species (ROS). However, the individual contribution of different mitochondrial processes independently of bioenergetics remains elusive and clinical treatments unavailable. A notable exception to this complexity is found in the case of monoamine oxidases (MAOs). Unlike other ROS-producing enzymes, especially within mitochondria, MAOs possess a distinct combination of defined molecular structure, substrate specificity, and clinically accessible inhibitors. Another significant aspect of MAO activity is the simultaneous generation of hydrogen peroxide alongside highly reactive aldehydes and ammonia. These three products synergistically impair mitochondrial function at various levels, ultimately jeopardizing cellular metabolic integrity and viability. This pathological condition arises from exacerbated MAO activity, observed in many cardiovascular diseases, thus justifying the exploration of MAO inhibitors as effective cardioprotective strategy. In this context, we not only summarize the deleterious roles of MAOs in cardiac pathologies and the positive effects resulting from genetic or pharmacological MAO inhibition, but also discuss recent findings that expand our understanding on the role of MAO in gene expression and cardiac development.
Collapse
Affiliation(s)
- Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127, Padua, Italy.
| | - Ruth Jepchirchir Arusei
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), 35131, Padua, Italy.
| |
Collapse
|