1
|
Aly SH, Abulsoud AI, Moustafa YM, Abdel Mageed SS, Abdelmaksoud NM, El-Dakroury WA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Rizk NI, Elshafei A, Elimam H, Ashraf A, Doghish AS. Harnessing natural compounds to modulate miRNAs in breast cancer therapy. Funct Integr Genomics 2024; 24:211. [PMID: 39528871 DOI: 10.1007/s10142-024-01489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer's complexity and heterogeneity continue to present significant challenges in its treatment and management. Emerging research has underscored the pivotal role of microRNAs (miRNAs) in breast cancer pathogenesis, acting as crucial regulators of gene expression. This review delivers an in-depth analysis of miRNAs, highlighting their dual functions as both oncogenes and tumor suppressors, and detailing their impact on key biological processes, including cell proliferation, apoptosis, and metastasis. The mechanisms underlying miRNA action, particularly their interactions with target mRNAs and the factors influencing these dynamics, are thoroughly explored. Additionally, the review discusses the therapeutic prospects of miRNAs, with a focus on innovative delivery systems like nanoparticles that improve the stability and effectiveness of miRNA-based therapies. It also addresses the anticancer effects of natural compounds, such as genistein, hesperidin, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), and glyceollins, which modulate miRNA expression and contribute to tumor growth inhibition. These advances seek to address the limitations of conventional therapies, paving the way for targeted interventions in breast cancer. By integrating current insights on miRNA biology, therapeutic strategies, and the potential of natural products to regulate miRNA expression, this review aims to shed light on miRNA- and natural product-based approaches as promising avenues for enhancing breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
2
|
Carbajal-López B, Martínez-Gutierrez AD, Madrigal-Santillán EO, Calderillo-Ruiz G, Morales-González JA, Coronel-Hernández J, Lockhart J, Millan-Catalan O, Mendoza-Rodriguez MG, Lino-Silva LS, Calderillo-Trejo G, Sumagin R, Pérez-Plasencia C, Pérez-Yépez EA. miR-3065-5p and miR-26a-5p as Clinical Biomarkers in Colorectal Cancer: A Translational Study. Cancers (Basel) 2024; 16:3649. [PMID: 39518087 PMCID: PMC11545460 DOI: 10.3390/cancers16213649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The prognosis of colorectal cancer (CRC) is mainly based on the clinical stage; however, CRC is considered a complex disease due to its molecular heterogeneity. The development of novel biomarkers to improve patients' diagnosis and prognosis remains fundamental. Methods: A cohort of forty-nine CRC patients from the National Cancer Institute of Mexico was included to collect clinical and miRNA expression data. The expression of a group of miRNAs was compared between CRC and non-tumoral adjacent tissues. Prognosis assessment considering each miRNA expression was tested using Kaplan-Meier survival curves and Cox regressions. Statistical significance was defined as p ≤ 0.05. Trial registration: Retrospective study No.2021/046. Results: miR-3065-5p and miR-26a-5p expression differed between non-tumoral adjacent and tumoral tissues (p = 0.02). In terms of overall survival (OS), patients with low expression of miR-3065-5p had a median OS of 70 months, while patients with high levels did not reach the median OS (p = 0.041). Male patients with low expression of this miRNA had an OS of 70 months, whereas patients with high levels did not reach the median OS (p = 0.050). Under uni-multivariate analysis, clinical stage (HR: 1.30, CI 1.23-2.30; p: 0.001) and low levels of miR-3065-5p (HR: 1.30, CI 1.23-2.30; p: 0.001) were determined as predictor factors of OS. To this end, we designed the "Prognosis miRNAs assessment in cancer" (PROMIR-C) algorithm, which integrated clinical features with miR-3065-5p expression levels. Conclusions: These findings support the clinical utility of miR-26a-5p and miR-3065-5p in the diagnosis and prognosis of CRC. PROMIR-C is a fundamental tool for clinicians in treatment decision-making, prognosis assessment, and outcome of CRC.
Collapse
Affiliation(s)
- Berenice Carbajal-López
- Programa de Doctorado en Investigación en Medicina, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan 14080, Mexico; (A.D.M.-G.); (J.C.-H.); (O.M.-C.)
| | | | - Eduardo O. Madrigal-Santillán
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (E.O.M.-S.); (J.A.M.-G.)
| | - Germán Calderillo-Ruiz
- Unidad Funcional de Gastroenterología, Oncología Médica, Instituto Nacional de Cancerología, Tlalpan 14080, Mexico; (G.C.-R.); (G.C.-T.)
| | - José Antonio Morales-González
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (E.O.M.-S.); (J.A.M.-G.)
| | - Jossimar Coronel-Hernández
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan 14080, Mexico; (A.D.M.-G.); (J.C.-H.); (O.M.-C.)
| | - Joey Lockhart
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St., Chicago, IL 60611, USA; (J.L.); (R.S.)
| | - Oliver Millan-Catalan
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan 14080, Mexico; (A.D.M.-G.); (J.C.-H.); (O.M.-C.)
| | - Monica G. Mendoza-Rodriguez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 04510, Mexico;
| | - Leonardo S. Lino-Silva
- Departamento de Anatomía Patológica, Instituto Nacional de Cancerología (INCan), Ciudad de Mexico 14080, Mexico;
| | - Germán Calderillo-Trejo
- Unidad Funcional de Gastroenterología, Oncología Médica, Instituto Nacional de Cancerología, Tlalpan 14080, Mexico; (G.C.-R.); (G.C.-T.)
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, 300 East Superior St., Chicago, IL 60611, USA; (J.L.); (R.S.)
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan 14080, Mexico; (A.D.M.-G.); (J.C.-H.); (O.M.-C.)
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México (UNAM), Iztacala, Tlalnepantla 54090, Mexico
| | - Eloy Andrés Pérez-Yépez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan 14080, Mexico; (A.D.M.-G.); (J.C.-H.); (O.M.-C.)
| |
Collapse
|
3
|
Doghish YA, Doghish AS, Mageed SSA, Mohammed OA, Hamza TA, Abdelaziz AA, Moustafa YM, Abdel-Reheim MA, Abbass SO, Abbass SO, Abbass MO, Noureldin S, Amin SA, Elimam H, Doghish SA. Natural compounds targeting miRNAs: a novel approach in oral cancer therapy. Funct Integr Genomics 2024; 24:202. [PMID: 39455476 DOI: 10.1007/s10142-024-01473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Oral cancer (OC) is a significant global health issue, with high rates of both mortality and morbidity. Conventional treatments, including surgery, radiation, and chemotherapy, are commonly used, but they often come with serious side effects and may not fully eliminate cancer cells, resulting in recurrence and resistance to treatment. In recent years, natural products derived from plants and other biological sources have gained attention for their potential anticancer properties. These compounds offer advantages such as lower toxicity compared to traditional chemotherapy. Notable natural compounds like quercetin, berberine, curcumin, andrographolide, nimbolide, ovatodiolide, and cucurbitacin B have demonstrated effectiveness in inhibiting OC cell growth by targeting various signaling pathways involved in cancer progression. Recent breakthroughs in molecular biology have highlighted the crucial role of microRNAs (miRNAs) in the development of OC. Targeting dysregulated miRNAs with natural products offers a promising strategy for treating the disease. Natural compounds exert anticancer effects by influencing both altered cellular signaling pathways and miRNA expression profiles. This study aims to explore the role of miRNAs as potential molecular targets in OC and to investigate how natural products may regulate these miRNAs. Additionally, this review will shed light on the therapeutic potential of phytochemicals in modulating miRNA expression and their significance in OC treatment.
Collapse
Affiliation(s)
- Youssef A Doghish
- Faculty of Dentistry, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Tamer A Hamza
- Faculty of Dentistry, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed Adel Abdelaziz
- Faculty of Dentistry, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | | | | | - Sara O Abbass
- Faculty of Dentistry, Modern University for Technology & Information, Cairo, Egypt
| | | | - Salma Noureldin
- Faculty of Dentistry, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Salma Ahmed Amin
- Faculty of Dentistry, Misr International University (MIU), Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Sama A Doghish
- Faculty of Computer and Information Sciences, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
4
|
Diamantopoulos MA, Adamopoulos PG, Scorilas A. Small non-coding RNAs as diagnostic, prognostic and predictive biomarkers of gynecological cancers: an update. Expert Rev Mol Diagn 2024:1-17. [PMID: 39390687 DOI: 10.1080/14737159.2024.2408740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs) comprise a heterogeneous cluster of RNA molecules. Emerging evidence suggests their involvement in various aspects of tumorigenesis, particularly in gynecological malignancies. Notably, ncRNAs have been implicated as mediators within tumor signaling pathways, exerting their influence through interactions with RNA or proteins. These findings further highlight the hypothesis that ncRNAs constitute therapeutic targets and point out their clinical potential as stratification biomarkers. AREAS COVERED The review outlines the use of small ncRNAs, including miRNAs, tRNA-derived small RNAs, PIWI-interacting RNAs and circular RNAs, for diagnostic, prognostic, and predictive purposes in gynecological cancers. It aims to increase our knowledge of their functions in tumor biology and their translation into clinical practice. EXPERT OPINION By leveraging interdisciplinary collaborations, scientists can decipher the riddle of small ncRNA biomarkers as diagnostic, prognostic and predictive biomarkers of gynecological tumors. Integrating small ncRNA-based assays into clinical practice will allow clinicians to provide cure plans for each patient, reducing the likelihood of adverse responses. Nevertheless, addressing challenges such as standardizing experimental methodologies and refining diagnostic assays is imperative for advancing small ncRNA research in gynecological cancer.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Darmadi D, Aminov Z, Hjazi A, R R, Kazmi SW, Mustafa YF, Hosseen B, Sharma A, Alubiady MHS, Al-Abdeen SHZ. Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer. Exp Cell Res 2024; 442:114267. [PMID: 39313176 DOI: 10.1016/j.yexcr.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Beneen Hosseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | | | | |
Collapse
|
6
|
Zhu M, Chen X, Chi M, Wu Y, Zhang M, Gao S. Spontaneous-stimulated Raman co-localization dual-modal analysis approach for efficient identification of tumor cells. Talanta 2024; 277:126297. [PMID: 38823327 DOI: 10.1016/j.talanta.2024.126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
The study of highly heterogeneous tumor cells, especially acute myeloid leukemia (AML) cells, usually relies on invasive analytical methods such as morphology, immunology, cytogenetics, and molecular biology classification, which are complex and time-consuming to perform. Mortality is high if patients are not diagnosed in a timely manner, so rapid label-free analysis of gene expression and metabolites within single-cell substructures is extremely important for clinical diagnosis and treatment. As a label-free and non-destructive vibrational detection technique, spontaneous Raman scattering provides molecular information across the full spectrum of the cell but lacks rapid imaging localization capabilities. In contrast, stimulated Raman scattering (SRS) provides a high-speed, high-resolution imaging view that can offer real-time subcellular localization assistance for spontaneous Raman spectroscopic detection. In this paper, we combined multi-color SRS microscopy with spontaneous Raman to develop a co-localized Raman imaging and spectral detection system (CRIS) for high-speed chemical imaging and quantitative spectral analysis of subcellular structures. Combined with multivariate statistical analysis methods, CRIS efficiently differentiated AML from normal leukocytes with an accuracy of 98.1 % and revealed the differences in the composition of nuclei and cytoplasm of AML relative to normal leukocytes. Compared to conventional Raman spectroscopy blind sampling without imaging localization, CRIS increased the efficiency of single-cell detection by at least three times. In addition, using the same approach for further identification of AML subtypes M2 and M3, we demonstrated that intracytoplasmic differential expression of proteins is a marker for their rapid and accurate classifying. CRIS analysis methods are expected to pave the way for clinical translation of rapid tumor cell identification.
Collapse
Affiliation(s)
- Mingyao Zhu
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Applied Optics, Changchun, Jilin, 130033, China; Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Xing Chen
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Applied Optics, Changchun, Jilin, 130033, China; Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Mingbo Chi
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Applied Optics, Changchun, Jilin, 130033, China; Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun, Jilin, 130033, China.
| | - Yihui Wu
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Applied Optics, Changchun, Jilin, 130033, China; Key Laboratory of Optical System Advanced Manufacturing Technology, Chinese Academy of Sciences, Changchun, Jilin, 130033, China.
| | - Ming Zhang
- Department of Hematology, The First Bethune Hospital, Jilin University, Changchun, Jilin, 130033, China
| | - Sujun Gao
- Department of Hematology, The First Bethune Hospital, Jilin University, Changchun, Jilin, 130033, China
| |
Collapse
|
7
|
Bai Y, Zhang Z, Bi J, Tang Q, Jiang K, Yao C, Wang W. miR-181c-5p/DERL1 pathway controls breast cancer progression mediated by TRAF6-linked K63 ubiquitination of AKT. Cancer Cell Int 2024; 24:204. [PMID: 38858669 PMCID: PMC11165795 DOI: 10.1186/s12935-024-03395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Aberrant Derlin-1 (DERL1) expression is associated with an overactivation of p-AKT, whose involvement in breast cancer (BRCA) development has been widely speculated. However, the precise mechanism that links DERL1 expression and AKT activation is less well-studied. METHODS Bioinformatic analyses hold a promising approach by which to detect genes' expression levels and their association with disease prognoses in patients. In the present work, a dual-luciferase assay was employed to investigate the relationship between DERL1 expression and the candidate miRNA by both in vitro and in vivo methods. Further in-depth studies involving immunoprecipitation-mass spectrum (IP-MS), co-immunoprecipitation (Co-IP), as well as Zdock prediction were performed. RESULTS Overexpression of DERL1 was detected in all phenotypes of BRCA, and its knockdown showed an inhibitory effect on BRCA cells both in vitro and in vivo. The Cancer Genome Atlas (TCGA) database reported that DERL1 overexpression was correlated with poor overall survival in BRCA cases, and so the quantification of DERL1 expression could be a potential marker for the clinical diagnosis of BRCA. On the other hand, miR-181c-5p was downregulated in BRCA, suggesting that its overexpression could be a potent therapeutic route to improve the overall survival of BRCA cases. Prior bioinformatic analyses indicated a somewhat positive correlation between DERL1 and TRAF6 as well as between TRAF6 and AKT, but not between miR-181c-5p and DERL1. In retrospect, DERL1 overexpression promoted p-AKT activation through K63 ubiquitination. DERL1 was believed to directly interact with the E3 ligase TRAF6. As Tyr77Ala or Tyr77Ala/Gln81Ala/Arg85Ala/Val158Ala attempts to prevent the interaction between DERL1 and TRAF domain of TRAF6, resulted in a significant reduction in K63-ubiquitinated p-AKT production. However, mutations in Gln81Ala, Arg85Ala, or Val158Ala could possibly interrupt with these processes. CONCLUSIONS Our data confirm that mediation of the miR-181c-5p/DERL1 pathway by TRAF6-linked AKT K63 ubiquitination holds one of the clues to set our focus on toward meeting the therapeutic goals of BRCA.
Collapse
Affiliation(s)
- Yang Bai
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhanqiang Zhang
- Department of Thyroid, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jiong Bi
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Qian Tang
- Department of Anesthesiology, Guiqian International General Hospital, Guiyang, 550000, Guizhou, China
| | - Keying Jiang
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Chen Yao
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Wenjian Wang
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
8
|
Mao J, Lu Y. Roles of circRNAs in the progression of colorectal cancer: novel strategies for detection and therapy. Cancer Gene Ther 2024; 31:831-841. [PMID: 38337038 DOI: 10.1038/s41417-024-00739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Endogenous noncoding RNAs with a covalently closed loop are known as circular RNAs (circRNAs). Recently, published works have revealed that circRNAs, which act as microRNA sponges, are critical for the biological behavior of several kinds of malignancies, including tumor cell proliferation, apoptosis, invasion, and metastasis. Additionally, there is a significant correlation between circRNAs and tumor resistance, stage, prognosis, and size. At present, colorectal cancer (CRC) is one of the most serious malignant tumors for human health. CircRNAs could represent potential targets to use in the prevention, diagnosis, and therapy of CRC, according to many studies. To fully comprehend the role of circRNAs in the incidence and progression of CRC, this review outlines the regulatory role and mechanisms of circRNAs in CRC and assesses their potential relevance as diagnostic and treatment possibilities for CRC. Our goal is to offer meaningful biological information for clinical evaluation and decision-making process for CRC treatment.
Collapse
Affiliation(s)
- Jun Mao
- Department of Medical Morphology Laboratory, Dalian Medical University's College of Basic Medical Sciences is located in Dalian, 116044, Dalian, China
- Liaoning Key Laboratory of Cancer Stem Cells, Dalian Medical University's College of Basic Medical Sciences is located in Dalian, 116044, Dalian, China
| | - Ying Lu
- Department of Medical Morphology Laboratory, Dalian Medical University's College of Basic Medical Sciences is located in Dalian, 116044, Dalian, China.
- Liaoning Key Laboratory of Cancer Stem Cells, Dalian Medical University's College of Basic Medical Sciences is located in Dalian, 116044, Dalian, China.
| |
Collapse
|
9
|
El-Hemaly A, Samir M, Taha H, Refaat A, Maher E, El-Beltagy M, Zaghloul MS, El-Haddad A. Atypical teratoid rhabdoid tumor in a lower middle‑income country: Challenges to cure. Oncol Lett 2024; 27:129. [PMID: 38348388 PMCID: PMC10859823 DOI: 10.3892/ol.2024.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024] Open
Abstract
Atypical teratoid rhabdoid tumor (ATRT) is a rare type of potentially fatal childhood brain tumor. The present study aimed to examine the overall survival (OS) and event-free survival (EFS) outcomes of pediatric patients with ATRT and to analyze the impact of different prognostic factors, including age, sex, tumor site and size, metastatic disease, the extent of resection, radiotherapy, and chemotherapy, on survival. The present study included 47 patients with ATRT treated at the Children's Cancer Hospital of Egypt (Cairo, Egypt) between July 2007 and December 2017. These patients were treated according to the Dana-Farber Cancer Institute protocol 02-294 for 51 weeks. Various prognostic factors, including age, sex, tumor size and initial metastatic status, exhibited no impact on the radiological response measured at 6 weeks and at the end of treatment. The primary tumor site significantly affected the response to treatment at 6 weeks (P=0.008). Toxicity-related mortality occurred in 29.8% of patients. The median duration of the treatment protocol was 66.9 weeks. The duration of treatment was in the present cohort was longer than the actual 51 weeks of the protocol due to prolonged supportive care of the included patients. Patients who encountered toxicity received reduced dose of chemotherapy in the subsequent cycles in the protocol. Age, initial metastatic status, tumor site and resection extent did not significantly affect the patient outcomes. Preoperative tumor size significantly affected the EFS (P=0.03) and OS (P=0.04). Radiotherapy administration significantly affected the OS (P<0.001) and EFS (P<0.001). The median EFS and OS of patients were 9.3 and 10.3 months, respectively. A total of 24 (51.1%) patients exhibited disease progression or recurrence. The progression sites were local (n=6), metastatic (n=9) or both local and metastatic (n=9). The results of the present study demonstrated that the therapeutic regimen should be patient-adjusted to maintain the treatment intensity and avoid toxicity-related mortality. In lower middle-income countries, short and intensified induction followed by consolidation of treatment, either by single or tandem autologous stem cell transplant, is needed to avoid prolonged exposure to myelosuppression and toxicity-related mortality.
Collapse
Affiliation(s)
- Ahmed El-Hemaly
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, 11765 Cairo, Egypt
- Department of Pediatric Oncology, Children's Cancer Hospital of Egypt, 12556 Cairo, Egypt
| | - Marwa Samir
- Department of Pediatric Oncology, Children's Cancer Hospital of Egypt, 12556 Cairo, Egypt
| | - Hala Taha
- Department of Pathology, National Cancer Institute, Cairo University, 12556 Cairo, Egypt
- Department of Pathology, Children's Cancer Hospital of Egypt, 12556 Cairo, Egypt
| | - Amal Refaat
- Department of Radiodiagnosis, National Cancer Institute, Children's Cancer Hospital of Egypt, Cairo University, 41516 Cairo, Egypt
| | - Eslam Maher
- Department of Clinical Research, Children's Cancer Hospital of Egypt, 11765 Cairo, Egypt
| | - Mohamed El-Beltagy
- Department of Neurosurgery, Faculty of Medicine, Children's Cancer Hospital of Egypt, Cairo University, 35855 Cairo, Egypt
| | - Mohamed S. Zaghloul
- Department of Radiation Oncology, National Cancer Institute, Children's Cancer Hospital of Egypt, Cairo University, 12556 Cairo, Egypt
| | - Alaa El-Haddad
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, 11765 Cairo, Egypt
- Department of Pediatric Oncology, Children's Cancer Hospital of Egypt, 12556 Cairo, Egypt
| |
Collapse
|
10
|
Jouve M, Carpentier R, Kraiem S, Legrand N, Sobolewski C. MiRNAs in Alcohol-Related Liver Diseases and Hepatocellular Carcinoma: A Step toward New Therapeutic Approaches? Cancers (Basel) 2023; 15:5557. [PMID: 38067261 PMCID: PMC10705678 DOI: 10.3390/cancers15235557] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 06/29/2024] Open
Abstract
Alcohol-related Liver Disease (ALD) is the primary cause of chronic liver disorders and hepatocellular carcinoma (HCC) development in developed countries and thus represents a major public health concern. Unfortunately, few therapeutic options are available for ALD and HCC, except liver transplantation or tumor resection for HCC. Deciphering the molecular mechanisms underlying the development of these diseases is therefore of major importance to identify early biomarkers and to design efficient therapeutic options. Increasing evidence indicate that epigenetic alterations play a central role in the development of ALD and HCC. Among them, microRNA importantly contribute to the development of this disease by controlling the expression of several genes involved in hepatic metabolism, inflammation, fibrosis, and carcinogenesis at the post-transcriptional level. In this review, we discuss the current knowledge about miRNAs' functions in the different stages of ALD and their role in the progression toward carcinogenesis. We highlight that each stage of ALD is associated with deregulated miRNAs involved in hepatic carcinogenesis, and thus represent HCC-priming miRNAs. By using in silico approaches, we have uncovered new miRNAs potentially involved in HCC. Finally, we discuss the therapeutic potential of targeting miRNAs for the treatment of these diseases.
Collapse
Affiliation(s)
- Mickaël Jouve
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Rodolphe Carpentier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Noémie Legrand
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cyril Sobolewski
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France
| |
Collapse
|
11
|
Ngaha TYS, Zhilenkova AV, Essogmo FE, Uchendu IK, Abah MO, Fossa LT, Sangadzhieva ZD, D. Sanikovich V, S. Rusanov A, N. Pirogova Y, Boroda A, Rozhkov A, Kemfang Ngowa JD, N. Bagmet L, I. Sekacheva M. Angiogenesis in Lung Cancer: Understanding the Roles of Growth Factors. Cancers (Basel) 2023; 15:4648. [PMID: 37760616 PMCID: PMC10526378 DOI: 10.3390/cancers15184648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Research has shown the role of growth factors in lung cancer angiogenesis. Angiogenesis promotes lung cancer progression by stimulating tumor growth, enhancing tumor invasion, contributing to metastasis, and modifying immune system responses within the tumor microenvironment. As a result, new treatment techniques based on the anti-angiogenic characteristics of compounds have been developed. These compounds selectively block the growth factors themselves, their receptors, or the downstream signaling pathways activated by these growth factors. The EGF and VEGF families are the primary targets in this approach, and several studies are being conducted to propose anti-angiogenic drugs that are increasingly suitable for the treatment of lung cancer, either as monotherapy or as combined therapy. The efficacy of the results are encouraging, but caution must be placed on the higher risk of toxicity, outlining the importance of personalized follow-up in the management of these patients.
Collapse
Affiliation(s)
- Tchawe Yvan Sinclair Ngaha
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
- Department of Public Health, James Lind Institute, Rue de la Cité 1, 1204 Geneva, Switzerland
| | - Angelina V. Zhilenkova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Freddy Elad Essogmo
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Ikenna K. Uchendu
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
- Medical Laboratory Science Department, Faculty of Health Science and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Moses Owoicho Abah
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Lionel Tabola Fossa
- Department of Oncology, Bafoussam Regional Hospital, Bafoussam 980, Cameroon;
| | - Zaiana D. Sangadzhieva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Varvara D. Sanikovich
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Alexander S. Rusanov
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Yuliya N. Pirogova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Alexander Boroda
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Alexander Rozhkov
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Jean D. Kemfang Ngowa
- Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde 1364, Cameroon;
| | - Leonid N. Bagmet
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Marina I. Sekacheva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| |
Collapse
|
12
|
Triantaphyllopoulos KA. Long Non-Coding RNAs and Their "Discrete" Contribution to IBD and Johne's Disease-What Stands out in the Current Picture? A Comprehensive Review. Int J Mol Sci 2023; 24:13566. [PMID: 37686376 PMCID: PMC10487966 DOI: 10.3390/ijms241713566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
13
|
Martino E, Balestrieri A, Aragona F, Bifulco G, Mele L, Campanile G, Balestrieri ML, D’Onofrio N. MiR-148a-3p Promotes Colorectal Cancer Cell Ferroptosis by Targeting SLC7A11. Cancers (Basel) 2023; 15:4342. [PMID: 37686618 PMCID: PMC10486764 DOI: 10.3390/cancers15174342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Ferroptosis, an iron-dependent form of cell death, and dysregulated microRNA (miRNA) expression correlate with colorectal cancer (CRC) development and progression. The tumor suppressor ability of miR-148a-3p has been reported for several cancers. Nevertheless, the role of miR-148a-3p in CRC remains largely undetermined. Here, we aim at investigating the molecular mechanisms and regulatory targets of miR-148a-3p in the CRC cell death mechanism(s). To this end, miR-148a-3p expression was evaluated in SW480 and SW620 cells and normal colon epithelial CCD 841 CoN cells with quantitative real-time polymerase chain reaction (qRT-PCR). Data reported a reduction of miR-148a-3p expression in SW480 and SW620 cells compared to non-tumor cells (p < 0.05). Overexpression of miR-148a selectively inhibited CRC cell viability (p < 0.001), while weakly affecting normal CCD 841 CoN cell survival (p < 0.05). At the cellular level, miR-148a-3p mimics promoted apoptotic cell death via caspase-3 activation (p < 0.001), accumulation of mitochondrial reactive oxygen species (ROS) (p < 0.001), and membrane depolarization (p < 0.001). Moreover, miR-148a-3p overexpression induced lipid peroxidation (p < 0.01), GPX4 downregulation (p < 0.01), and ferroptosis (p < 0.01), as revealed by intracellular and mitochondrial iron accumulation and ACSL4/TFRC/Ferritin modulation. In addition, levels of SLC7A11 mRNA and protein, the cellular targets of miR-148a-3p predicted by bioinformatic tools, were suppressed by miR-148a-3p's overexpression. On the contrary, the downregulation of miR-148a-3p boosted SLC7A11 gene expression and suppressed ferroptosis. Together, these in vitro findings reveal that miR-148a-3p can function as a tumor suppressor in CRC by targeting SLC7A11 and activating ferroptosis, opening new perspectives for the rationale of therapeutic strategies through targeting the miR-148a-3p/SLC7A11 pathway.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (E.M.); (N.D.)
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Francesca Aragona
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.A.); (G.B.); (G.C.)
| | - Giovanna Bifulco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.A.); (G.B.); (G.C.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138 Naples, Italy;
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.A.); (G.B.); (G.C.)
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (E.M.); (N.D.)
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (E.M.); (N.D.)
| |
Collapse
|
14
|
Peng Y, Liu H, Wu Q, Wang L, Yu Y, Yin F, Feng C, Ren X, Liu T, Chen L, Zhu H. Integrated bioinformatics analysis and experimental validation reveal ISG20 as a novel prognostic indicator expressed on M2 macrophage in glioma. BMC Cancer 2023; 23:596. [PMID: 37380984 DOI: 10.1186/s12885-023-11057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Glioma is the most common malignant primary brain tumor and is characterized by a poor prognosis and limited therapeutic options. ISG20 expression is induced by interferons or double-stranded RNA and is associated with poor prognosis in several malignant tumors. Nevertheless, the expression of ISG20 in gliomas, its impact on patient prognosis, and its role in the tumor immune microenvironment have not been fully elucidated. METHODS Using bioinformatics, we comprehensively illustrated the potential function of ISG20, its predictive value in stratifying clinical prognosis, and its association with immunological characteristics in gliomas. We also confirmed the expression pattern of ISG20 in glioma patient samples by immunohistochemistry and immunofluorescence staining. RESULTS ISG20 mRNA expression was higher in glioma tissues than in normal tissues. Data-driven results showed that a high level of ISG20 expression predicted an unfavorable clinical outcome in glioma patients, and revealed that ISG20 was possibly expressed on tumor-associated macrophages and was significantly associated with immune regulatory processes, as evidenced by its positive correlation with the infiltration of regulatory immune cells (e.g., M2 macrophages and regulatory T cells), expression of immune checkpoint molecules, and effectiveness of immune checkpoint blockade therapy. Furthermore, immunohistochemistry staining confirmed the enhanced expression of ISG20 in glioma tissues with a higher WHO grade, and immunofluorescence assay verified its cellular localization on M2 macrophages. CONCLUSIONS ISG20 is expressed on M2 macrophages, and can serve as a novel indicator for predicting the malignant phenotype and clinical prognosis in glioma patients.
Collapse
Affiliation(s)
- Yaojun Peng
- Department of Graduate Administration, Medical School of Chinese, PLA General Hospital, Beijing, China
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28Th Fuxing Road, Beijing, China
| | - Hongyu Liu
- Department of Graduate Administration, Medical School of Chinese, PLA General Hospital, Beijing, China
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, 28Th Fuxing Road, Beijing, China
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, China
| | - Qiyan Wu
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, 8Th East Road of Fengtai, Beijing, China
| | - Lingxiong Wang
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, 8Th East Road of Fengtai, Beijing, China
| | - Yanju Yu
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, 8Th East Road of Fengtai, Beijing, China
| | - Fan Yin
- Department of Oncology, The Second Medical Center & National Clinical Research Center of Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Cong Feng
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28Th Fuxing Road, Beijing, China
| | - Xuewen Ren
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28Th Fuxing Road, Beijing, China
| | - Tianyi Liu
- Institute of Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, 8Th East Road of Fengtai, Beijing, China.
| | - Ling Chen
- Department of Neurosurgery, The First Medical Center, Chinese PLA General Hospital, 28Th Fuxing Road, Beijing, China.
| | - Haiyan Zhu
- Department of Emergency, The First Medical Center, Chinese PLA General Hospital, 28Th Fuxing Road, Beijing, China.
| |
Collapse
|