1
|
Wang L, Lei X, Lan Z, He R, Jiang Z. Ultrasound-Guided Thoracic Paravertebral Injection of Platelet-Rich Plasma for the Treatment of Thoracic Herpes Zoster-Related Pain: A Study Protocol. Pain Ther 2024:10.1007/s40122-024-00691-6. [PMID: 39665856 DOI: 10.1007/s40122-024-00691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Herpes zoster (HZ), triggered by the reactivation of the varicella-zoster virus, manifests as a painful rash known as zoster-associated pain (ZAP), which can progress to postherpetic neuralgia (PHN). This study evaluates the efficacy and safety of ultrasound-guided thoracic paravertebral injections of platelet-rich plasma (PRP) in managing acute ZAP and preventing PHN. METHODS This is a prospective, randomized, controlled, open-label, endpoint-blinded, single-center trial involving 128 participants suffering from zoster-associated pain. Participants will be randomly assigned to the PRP treatment in combination with antiviral therapy group or the antiviral therapy group at a 1:1 ratio. Pain intensity (NRS-11), quality of life (SF-12), sleep quality (PSQI), pain characteristics, skin lesion recovery, average weekly consumption of rescue analgesics, and adverse events will be assessed. Follow-up assessments will be conducted at 1, 3, 6, and 12 months post-intervention to evaluate the incidence rate of PHN, pain intensity, quality of life, sleep quality, and safety. ETHICS AND DISSEMINATION Adhering to the 2013 SPIRIT statement and the Declaration of Helsinki, this study has received ethical approval from the relevant committee. Results will be disseminated through scientific journals and conferences, contributing to global data on managing ZAP. CONCLUSIONS By comparing PRP with antiviral therapy, this trial seeks to establish a more effective treatment paradigm for reducing acute zoster-associated pain and the incidence of PHN, potentially setting a new standard in therapeutic strategies for HZ. TRIAL REGISTRATION This clinical trial is registered with the Chinese Clinical Trial Registry (ChiCTR) at https://www.chictr.org.cn/index.html (Registration Number: ChiCTR2400087248, Registration Date: 2024-07-23).
Collapse
Affiliation(s)
- Liu Wang
- Department of Pain Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Xinyu Lei
- Department of Pain Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Zhixuan Lan
- Department of Pain Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Ruilin He
- Department of Pain Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| | - Zongbin Jiang
- Department of Pain Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
| |
Collapse
|
2
|
Cocconi F, Maffulli N, Bell A, Memminger MK, Simeone F, Migliorini F. Sacroiliac joint pain: what treatment and when. Expert Rev Neurother 2024; 24:1055-1062. [PMID: 39262128 DOI: 10.1080/14737175.2024.2400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Spinal and non-spinal pathologies can cause low back pain. Non-spinal sources of low back pain include the sacroiliac joint (SIJ) and the hip. SIJ pain can be treated either conservatively or surgically. Current strategies for managing sacroiliac joint pain are debated, and limited evidence exists. AREAS COVERED The present expert opinion updates current evidence on conservative and surgical modalities for SIJ pain. EXPERT OPINION Surgical management for SIJ pain is effective. However, it exposes patients to surgery and, therefore, related complications. Conservative management may be implemented in patients with moderate SIJ pain, with less than six months of symptoms, or not eligible for surgery. Several noninvasive modalities are available, mostly centered on intra-articular injections. Corticosteroids, platelet-rich plasma, and stem cells have only midterm lasting effects, at most for nine months. Radiofrequency ablation is another methodology for pain relief. Both continuous and pulsatile radiofrequency ablation are associated with good outcomes. SIJ fusion can be performed using different techniques; however, a clear recommendation on the most appropriate modality for the management of SIJ pain is still debated.
Collapse
Affiliation(s)
- Federico Cocconi
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical University, Bolzano, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Medicine and Psychology, University La Sapienza, Roma, Italy
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London, UK
| | - Andreas Bell
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St. Brigida, Simmerath, Germany
| | - Michael Kurt Memminger
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical University, Bolzano, Italy
| | - Francesco Simeone
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical University, Bolzano, Italy
| | - Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical University, Bolzano, Italy
- Department of Orthopaedic and Trauma Surgery, Eifelklinik St. Brigida, Simmerath, Germany
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy
| |
Collapse
|
3
|
Li X, Guo F, Deng J, Li J, Zhang J, Fu M, Fan H. Leukocyte Platelet-Rich Plasma-Derived Exosomes Restrained Macrophages Viability and Induced Apoptosis, NO Generation, and M1 Polarization. Immun Inflamm Dis 2024; 12:e70064. [PMID: 39545659 PMCID: PMC11565605 DOI: 10.1002/iid3.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Chronic refractory wounds refer to wounds that cannot be repaired timely. Platelet-rich plasma (PRP) has significant potential in chronic wound healing therapy. The exosomes isolated from PRP were proved to exhibit more effectiveness than PRP. However, the therapeutic potential of exosomes from PRP on chronic refractory wounds remained elusive. Hence, this study aimed to clarify the action of exosomes from PRP on chronic refractory wounds by evaluating the response of macrophages to exosomes. METHODS Pure platelet-rich plasma (P-PRP) and leukocyte platelet-rich plasma (L-PRP) were prepared from the fasting venous blood of healthy volunteers. Exosomes were extracted from P-PRP and L-PRP using ultracentrifugation and identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot. Macrophages were obtained by inducing THP-1 cells with phorbol-12-myristate-13 acetate (PMA). The internalization of exosomes into macrophages was observed utilizing confocal laser scanning microscopy after being labeled with PKH67. Cell viability was determined by CCK-8 assay. Cell apoptosis was measured utilizing a flow cytometer. The polarization status of M1 and M2 macrophages were evaluated by detecting their markers. Nitric oxide (NO) detection was conducted using the commercial kit. RESULTS Exosomes from P-PRP and L-PRP were absorbed by macrophages. Exosomes from L-PRP restrained viability and induced apoptosis of macrophages. Besides, exosomes from P-PRP promoted M2 polarization, and exosomes from L-PRP promoted M1 polarization. Furthermore, exosomes from L-PRP promoted NO generation of macrophages. CONCLUSION Exosomes from L-PRP restrained viability, induced apoptosis and NO generation of macrophages, and promoted M1 polarization, while exosomes from P-PRP increased M2 polarization. The exosomes from L-PRP presented a more effective effect on macrophages than that from P-PRP, making it a promising strategy for chronic refractory wound management.
Collapse
Affiliation(s)
- Xiong Li
- Department of Plastic and Aesthetic SurgeryThe Second Affiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Feifei Guo
- Department of Health Management CentreThe Second Affiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Jiehua Deng
- Department of Plastic and Aesthetic SurgeryThe Second Affiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Jiasong Li
- Department of Plastic and Aesthetic SurgeryThe Second Affiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Jie Zhang
- Department of Plastic and Aesthetic SurgeryThe Second Affiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Ming Fu
- Department of Plastic and Aesthetic SurgeryThe Second Affiliated Hospital of Guilin Medical UniversityGuilinChina
| | - Hui Fan
- Department of OtolaryngologyThe Second Affiliated Hospital of Guilin Medical UniversityGuilinChina
| |
Collapse
|
4
|
Yu XJ, Zhao YT, Abudouaini H, Zou P, Li TQ, Bai XF, Wang SX, Guan JB, Li MW, Wang XD, Wang YG, Hao DJ. A novel spherical GelMA-HAMA hydrogel encapsulating APET×2 polypeptide and CFIm25-targeting sgRNA for immune microenvironment modulation and nucleus pulposus regeneration in intervertebral discs. J Nanobiotechnology 2024; 22:556. [PMID: 39267105 PMCID: PMC11391743 DOI: 10.1186/s12951-024-02783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
METHODS Single-cell transcriptomics and high-throughput transcriptomics were used to screen factors significantly correlated with intervertebral disc degeneration (IDD). Expression changes of CFIm25 were determined via RT-qPCR and Western blot. NP cells were isolated from mouse intervertebral discs and induced to degrade with TNF-α and IL-1β. CFIm25 was knocked out using CRISPR-Cas9, and CFIm25 knockout and overexpressing nucleus pulposus (NP) cell lines were generated through lentiviral transfection. Proteoglycan expression, protein expression, inflammatory factor expression, cell viability, proliferation, migration, gene expression, and protein expression were analyzed using various assays (alcian blue staining, immunofluorescence, ELISA, CCK-8, EDU labeling, transwell migration, scratch assay, RT-qPCR, Western blot). The GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA was designed, and its effects on NP regeneration were assessed through in vitro and mouse model experiments. The progression of IDD in mice was evaluated using X-ray, H&E staining, and Safranin O-Fast Green staining. Immunohistochemistry was performed to determine protein expression in NP tissue. Proteomic analysis combined with in vitro and in vivo experiments was conducted to elucidate the mechanisms of hydrogel action. RESULTS CFIm25 was upregulated in IDD NP tissue and significantly correlated with disease progression. Inhibition of CFIm25 improved NP cell degeneration, enhanced cell proliferation, and migration. The hydrogel effectively knocked down CFIm25 expression, improved NP cell degeneration, promoted cell proliferation and migration, and mitigated IDD progression in a mouse model. The hydrogel inhibited inflammatory factor expression (IL-6, iNOS, IL-1β, TNF-α) by targeting the p38/NF-κB signaling pathway, increased collagen COLII and proteoglycan Aggrecan expression, and suppressed NP degeneration-related factors (COX-2, MMP-3). CONCLUSION The study highlighted the crucial role of CFIm25 in IDD and introduced a promising therapeutic strategy using a porous spherical GelMA-HAMA hydrogel loaded with APET×2 polypeptide and sgRNA. This innovative approach offers new possibilities for treating degenerated intervertebral discs.
Collapse
Grants
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
- 82302763, 82202764, 82202765 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Xiao-Jun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Yuan-Ting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Haimiti Abudouaini
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Peng Zou
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Tian-Qi Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Xiao-Fan Bai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Shan-Xi Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Jian-Bin Guan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Meng-Wei Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Dong Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China
| | - Ying-Guang Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China.
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China.
- Shaanxi Key Laboratory of Spine Bionic Treatment, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Baker JJ, Rosenberg J. Coatings for Permanent Meshes Used to Enhance Healing in Abdominal Hernia Repair: A Scoping Review. Surg Innov 2024; 31:424-434. [PMID: 38803124 DOI: 10.1177/15533506241255258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Hernia meshes are used to reduce recurrence and pain rates, but the rates are still high. This could be improved with coatings of the mesh. This scoping review aimed to provide an overview of mesh coatings used to promote healing in abdominal hernia repair and to report beneficial and unbeneficial effects. METHODS We included human and animal studies with abdominal hernias that were repaired with non-commercially coated meshes. We searched Pubmed, Embase, Cochrane Central, LILACS, and CNKI without language constraints. RESULTS Of 2933 identified studies, 58 were included: six studies had a total of 408 humans and 52 studies had 2679 animals. The median follow-up was 12 months (range 1-156), and 95% of the hernias were incisional. There were 44 different coatings which included platelet-rich plasma, mesenchymal stem cells, growth factors, vitamin E, collagen-derived products, various polysaccharides, silk proteins, chitosan, gentamycin, doxycycline, nitrofurantoin, titanium, and diamond-like carbon. Mesenchymal stem cells and platelet-rich plasma were the most researched. Mesenchymal stem cells notably reduced inflammation and foreign body reactions but did not impact other healing metrics. In contrast, platelet-rich plasma positively influenced tissue ingrowth, collagen deposition, and neovascularization and had varying effects on inflammation and foreign body reactions. CONCLUSION We identified 44 different mesh coatings and they showed varying results. Mesenchymal stem cells and platelet-rich plasma were the most studied, with the latter showing considerable promise in improving biomechanical properties in hernia repair. Further investigations are needed to ascertain their definitive use in humans.
Collapse
Affiliation(s)
- Jason Joe Baker
- Center for Perioperative Optimization, Department of Surgery, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Jacob Rosenberg
- Center for Perioperative Optimization, Department of Surgery, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
6
|
Chen X, Zhang A, Zhao K, Gao H, Shi P, Chen Y, Cheng Z, Zhou W, Zhang Y. The role of oxidative stress in intervertebral disc degeneration: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 98:102323. [PMID: 38734147 DOI: 10.1016/j.arr.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Oxidative stress is one of the main driving mechanisms of intervertebral disc degeneration(IDD). Oxidative stress has been associated with inflammation in the intervertebral disc, cellular senescence, autophagy, and epigenetics of intervertebral disc cells. It and the above pathological mechanisms are closely linked through the common hub reactive oxygen species(ROS), and promote each other in the process of disc degeneration and promote the development of the disease. This reveals the important role of oxidative stress in the process of IDD, and the importance and great potential of IDD therapy targeting oxidative stress. The efficacy of traditional therapy is unstable or cannot be maintained. In recent years, due to the rise of materials science, many bioactive functional materials have been applied in the treatment of IDD, and through the combination with traditional drugs, satisfactory efficacy has been achieved. At present, the research review of antioxidant bioactive materials in the treatment of IDD is not complete. Based on the existing studies, the mechanism of oxidative stress in IDD and the common antioxidant therapy were summarized in this paper, and the strategies based on emerging bioactive materials were reviewed.
Collapse
Affiliation(s)
- Xianglong Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjuan Zhou
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Tang Y, Li Y, Chen H, Huang Y, Huang C, Wei W. Application of cord blood-derived platelet-rich plasma in the treatment of diseases. J Int Med Res 2024; 52:3000605241263729. [PMID: 39068531 PMCID: PMC11287719 DOI: 10.1177/03000605241263729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024] Open
Abstract
Platelet-rich plasma (PRP), a blood product containing high concentrations of platelets, has been increasingly used for the treatment of a number of diseases because of its anti-inflammatory and regenerative properties. PRP is generally obtained from the patient's own peripheral blood when used in clinical applications, but allogeneic PRP extracted from umbilical cord blood has also attracted attention due to its unique advantages. The main purpose of this narrative review was to summarize the research and clinical application of cord blood-derived PRP (CB-PRP) in the treatment of diseases up to April 2024. This review also discusses the differences between CB-PRP and autologous PRP (A-PRP). A thorough search of PubMed® and Clinicaltrials.gov identified 13 articles and four clinical trials. To date, CB-PRP has been primarily studied in the fields of orthopaedics, dermatology, neurology, obstetrics/gynaecology and ophthalmology. This is likely to be because this research is relatively novel. Considering the differences between the characteristics of A-PRP and CB-PRP, it is thought that CB-PRP might hold more promise for broader applications in the future.
Collapse
Affiliation(s)
- Yukuan Tang
- Department of Minimally Invasive Interventions, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Yongsheng Li
- Laboratory Centre, Guangdong Cord Blood Bank, Guangzhou, Guangdong Province, China
- Scientific Research Centre, Guangzhou Municipality Tianhe Nuoya Bio-engineering Company Limited, Guangzhou, Guangdong Province, China
| | - Hanwei Chen
- Department of Minimally Invasive Interventions, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong Province, China
- Institute of Medical Imaging, Guangzhou Panyu District Health Management Centre (Guangzhou Panyu District Rehabilitation Hospital), Guangzhou, China, Guangzhou, Guangdong Province, China
| | - Yuyang Huang
- Department of Bone, Joint and Sports Medicine, Guangzhou Panyu District Rehabilitation Hospital, Guangzhou, Guangdong Province, China
| | - Chen Huang
- Department of Minimally Invasive Interventions, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Wei Wei
- Laboratory Centre, Guangdong Cord Blood Bank, Guangzhou, Guangdong Province, China
- Scientific Research Centre, Guangzhou Municipality Tianhe Nuoya Bio-engineering Company Limited, Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Playfair D, Smith A, Burnham R. An evaluation of the effectiveness of platelet rich plasma epidural injections for low back pain suspected to be of disc origin - A pilot study with one-year follow-up. INTERVENTIONAL PAIN MEDICINE 2024; 3:100403. [PMID: 39238590 PMCID: PMC11373028 DOI: 10.1016/j.inpm.2024.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 09/07/2024]
Abstract
Summary of background data Low back pain of disc origin is common yet challenging to treat. Intradiscal platelet rich plasma (PRP) has been advocated, but is associated with risk of discitis. Epidural PRP is less invasive and avoids this risk. Few studies exist evaluating effectiveness and safety of epidural PRP for discogenic low back pain without radiculopathy and the follow-up of the studies tends to be short. Objective Prospectively evaluate for 12 months the effectiveness of PRP epidural injections for patients with low back pain without radiculopathy, suspected to be of disc origin. Methods 11 consecutive patients with refractory low back pain suspected to be of disc origin (compatible clinical assessment; negative lumbosacral medial branch blocks (MBBs) and/or magnetic resonance imaging (MRI) with high intensity zone (HIZ), Modic 1 or 2 changes) participated. Each underwent one (n = 5) or two (n = 6) epidural injections (caudal or interlaminar). The PRP was leukocyte/red cell depleted with an average platelet concentration of ∼2X whole blood. Numerical rating scale (NRS), Pain Disability Quality-Of-Life Questionnaire (PDQQ) score, Oswestry Disability Index (ODI) score, effect on analgesic intake, treatment satisfaction and endorsement were recorded prior to and at 3, 6 and 12-months post-treatment. Results Significant improvements in pain and disability were documented post-treatment. Pre-, 3, 6, and 12-month post mean(sd) NRS scores were 7.8(1.8), 5.8(2.7), 5.1(2.5), 4.9(2.8) respectively (F = 7.2; p = 0.002). At 12 months post PRP epidural, the mean improvement in NRS was 36%, 36% had experienced ≥50% pain relief (95% confidence interval (CI): 2%, 70%), and 73% achieved minimal clinically important differences (MCID) (95% CI: 41%, 100%). Similar magnitude improvements in disability (PDQQ and ODI) were documented. At 1-year post, 50% of analgesic users had reduced intake, 91% were satisfied with the treatment and would recommend the procedure to family and friends. No complications were reported. Discussions/conclusion This pilot project suggests that PRP epidural injections provide modest yet significant improvements in pain and disability that lasts at least 12 months in patients with low back pain suspected to be of disc origin. Additional research including larger sample size and robust study design is encouraged.
Collapse
Affiliation(s)
- David Playfair
- Central Alberta Pain and Rehabilitation Institute, Lacombe, Alberta, Canada
| | - Ashley Smith
- Vivo Cura Health, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Robert Burnham
- Central Alberta Pain and Rehabilitation Institute, Lacombe, Alberta, Canada
- Vivo Cura Health, Calgary, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Gruber R. How to explain the beneficial effects of platelet-rich plasma. Periodontol 2000 2024. [PMID: 38600634 DOI: 10.1111/prd.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 04/12/2024]
Abstract
Platelet-rich plasma (PRP) is the platelet and leukocyte-containing plasmatic fraction of anticoagulated autologous blood. While evidence supporting the clinical use of PRP in dentistry is low, PRP is widely used in sports medicine, orthopedics, and dermatology. Its beneficial activity is commonly attributed to the growth factors released from platelets accumulating in PRP; however, evidence is indirect and not comprehensive. There is thus a demand to revisit PRP with respect to basic and translational science. This review is to (i) recapitulate protocols and tools to prepare PRP; (ii) to discuss the cellular and molecular composition of PRP with a focus on platelets, leukocytes, and the fibrin-rich extracellular matrix of coagulated plasma; and finally (iii) to discuss potential beneficial effects of PRP on a cellular and molecular level with an outlook on its current use in dentistry and other medical fields.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Zhang X, Zhang A, Guan H, Zhou L, Zhang J, Yin W. The Clinical Efficacy of Platelet-Rich Plasma Injection Therapy versus Different Control Groups for Chronic Low Back Pain: A Network Meta-Analysis of Randomized Controlled Trials. J Pain Res 2024; 17:1077-1089. [PMID: 38505505 PMCID: PMC10948334 DOI: 10.2147/jpr.s444189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Objective Low back pain is one of the main causes of disability in the world. Although regenerative medicine may represent breakthroughs in the management of low back pain, its use remains controversial. Therefore, we conducted a meta-analysis to evaluate the clinical efficacy of platelet-rich plasma (PRP) injection therapy versus different control groups for chronic low back pain during 4 weeks, 3 months, and 6 months. Methods Different electronic databases were searched for randomized controlled trials up to August 2023. Mean changes from baseline in pain and Oswestry Disability Index (ODI) scores at 4 weeks, 3 months, and 6 months and standard deviations of outcome were recorded. Results Four articles with 154 cases were finally included in this meta-analysis. After 4 weeks, corticosteroid (CS) was the optimal treatment option for chronic low back pain in terms of improvement in pain and disability index (surface under the cumulative ranking curve [SUCRA]=71.3%, SUCRA=57.8%, respectively). After 3 months, radiofrequency (RF) emerged as the best therapy in pain (SUCRA=100%) and disability index (SUCRA=98.5%), followed by PRP (SUCRA=62.3%, SUCRA=64.3%, respectively), CS (SUCRA=24.6%, SUCRA=25.9%, respectively) and lidocaine (SUCRA=13.1%, SUCRA=11.3%, respectively). At 6 months, RF was most likely to be the best treatment in pain (SUCRA=94.9%) and disability index (SUCRA=77.3%), followed by PRP (SUCRA=71.2%, SUCRA=79.6%, respectively). However, compared with the last follow-up, there was a slight downward trend in improvement pain and disability index with RF, while PRP was still an upward trend. Conclusion This study demonstrated better short-term improvement of chronic low back pain with CS after 4 weeks. PRP and RF improvement effects matched, but follow-up of at least 6 months showed that PRP seemed to be more advantageous in improvement in disability indices. Considering the limitations of this study, these conclusions still need to be verified by more comparative RCTs and a longer follow-up period.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pharmacy, Kunming Yan’an Hospital, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650051, People’s Republic of China
| | - Aili Zhang
- Department of Scientific Research, Kunming Yan’an Hospital, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650051, People’s Republic of China
| | - Hao Guan
- Department of Pharmacy, Kunming Yan’an Hospital, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650051, People’s Republic of China
| | - Li Zhou
- Department of Pharmacy, Kunming Yan’an Hospital, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650051, People’s Republic of China
| | - Jiao Zhang
- Department of Basic Medicine, Zhaotong Health Vocational College, Zhaotong, Yunnan, 657000, People’s Republic of China
| | - Wenjie Yin
- Department of Pharmacy, Kunming Yan’an Hospital, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650051, People’s Republic of China
| |
Collapse
|
11
|
Kawabata S, Nagai S, Ito K, Takeda H, Ikeda D, Kawano Y, Kaneko S, Shiraishi Y, Sano Y, Ohno Y, Fujita N. Intradiscal administration of autologous platelet-rich plasma in patients with Modic type 1 associated low back pain: A prospective pilot study. JOR Spine 2024; 7:e1320. [PMID: 38500785 PMCID: PMC10945308 DOI: 10.1002/jsp2.1320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/06/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024] Open
Abstract
Background Various treatments for chronic low back pain (LBP) have been reported; among them, platelet-rich plasma (PRP) as a regenerative medicine has attracted much attention. Although Modic type 1 change (MC1) is associated with LBP, no treatment has been established so far. In addition, no studies have administered PRP to intervertebral discs (IVDs) in patients with LBP, targeting MC1 only. Thus, the purpose of this study was to determine the safety and efficacy of PRP administration to the IVDs in patients with MC1 experiencing LBP. Methods PRP was injected intradiscally to 10 patients with MC1 experiencing LBP. Patients were followed prospectively for up to 24 weeks after primary administration. Physical condition, laboratory data, and lumbar x-ray images were evaluated for safety assessment. Furthermore, to evaluate the effectiveness of PRP, patient-reported outcomes were considered. In addition, changes in MC1 were assessed using magnetic resonance imaging (MRI). Results There were no adverse events in the laboratory data or lumbar X-ray images after administration. The mean visual analog scale, which was 70.0 ± 13.3 before the treatment, significantly decreased 1 week after PRP administration and was 39.0 ± 28.8 at the last observation. Oswestry disability index and Roland Morris disability questionnaire scores promptly improved after treatment, and both improved significantly 24 weeks after PRP administration. Follow-up MRI 24 weeks after treatment showed a significant decrease in the mean high-signal intensity of fat-suppressed T2-weighted imaging from 10.1 to 7.90 mm2 compared with that before PRP administration. Conclusions The safety and efficacy of PRP administration to the IVDs of patients with MC1 experiencing LBP were identified. Post-treatment MRI suggested improvement in inflammation, speculating that PRP suppressed inflammation and consequently relieved the patient's symptoms. Despite the small number of patients, this treatment is promising for patients with MC1 experiencing LBP. The study protocol has been reviewed and approved by the Certified Committee for Regenerative Medicine and the Japanese Ministry of Health, Labor and Welfare (Japan Registry of Clinical Trials [jRCT] No. jRCTb042210159).
Collapse
Affiliation(s)
- Soya Kawabata
- Department of Orthopaedic Surgery, School of MedicineFujita Health UniversityToyoakeAichiJapan
| | - Sota Nagai
- Department of Orthopaedic Surgery, School of MedicineFujita Health UniversityToyoakeAichiJapan
| | - Kei Ito
- Department of Orthopaedic Surgery, School of MedicineFujita Health UniversityToyoakeAichiJapan
| | - Hiroki Takeda
- Department of Spine and Spinal Cord Surgery, School of MedicineFujita Health UniversityToyoakeAichiJapan
| | - Daiki Ikeda
- Department of Orthopaedic Surgery, School of MedicineFujita Health UniversityToyoakeAichiJapan
| | - Yusuke Kawano
- Department of Orthopaedic Surgery, School of MedicineFujita Health UniversityToyoakeAichiJapan
| | - Shinjiro Kaneko
- Department of Spine and Spinal Cord Surgery, School of MedicineFujita Health UniversityToyoakeAichiJapan
| | | | - Yuichiro Sano
- Canon Medical Systems CorporationOtawaraTochigiJapan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, School of MedicineFujita Health UniversityToyoakeAichiJapan
- Joint Research Laboratory of Advanced Medical Imaging, School of MedicineFujita Health UniversityToyoakeAichiJapan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, School of MedicineFujita Health UniversityToyoakeAichiJapan
| |
Collapse
|
12
|
Su L, Xie S, Li T, Jia Y, Wang Y. Pretreatment with platelet-rich plasma protects against ischemia-reperfusion induced flap injury by deactivating the JAK/STAT pathway in mice. Mol Med 2024; 30:18. [PMID: 38302877 PMCID: PMC10835983 DOI: 10.1186/s10020-024-00781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is a major cause of surgical skin flap compromise and organ dysfunction. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, with tissue regenerative potential. PRP has shown promise in multiple I/R-induced tissue injuries, but its effects on skin flap injury remain unexplored. METHODS We evaluated the effects of PRP on I/R-injured skin flaps, optimal timing of PRP administration, and the involved mechanisms. RESULTS PRP protected against I/R-induced skin flap injury by improving flap survival, promoting blood perfusion and angiogenesis, suppressing oxidative stress and inflammatory response, and reducing apoptosis, at least partly via deactivating Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signalling pathway. PRP given before ischemia displayed overall advantages over that given before reperfusion or during reperfusion. In addition, PRP pretreatment had a stronger ability to reverse I/R-induced JAK/STAT activation and apoptosis than AG490, a specific inhibitor of JAK/STAT signalling. CONCLUSIONS This study firstly demonstrates the protective role of PRP against I/R-injured skin flaps through negative regulation of JAK/STAT activation, with PRP pretreatment showing optimal therapeutic effects.
Collapse
Affiliation(s)
- Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
| | - Songtao Xie
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Ting Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
13
|
Grzelak A, Hnydka A, Higuchi J, Michalak A, Tarczynska M, Gaweda K, Klimek K. Recent Achievements in the Development of Biomaterials Improved with Platelet Concentrates for Soft and Hard Tissue Engineering Applications. Int J Mol Sci 2024; 25:1525. [PMID: 38338805 PMCID: PMC10855389 DOI: 10.3390/ijms25031525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Platelet concentrates such as platelet-rich plasma, platelet-rich fibrin or concentrated growth factors are cost-effective autologous preparations containing various growth factors, including platelet-derived growth factor, transforming growth factor β, insulin-like growth factor 1 and vascular endothelial growth factor. For this reason, they are often used in regenerative medicine to treat wounds, nerve damage as well as cartilage and bone defects. Unfortunately, after administration, these preparations release growth factors very quickly, which lose their activity rapidly. As a consequence, this results in the need to repeat the therapy, which is associated with additional pain and discomfort for the patient. Recent research shows that combining platelet concentrates with biomaterials overcomes this problem because growth factors are released in a more sustainable manner. Moreover, this concept fits into the latest trends in tissue engineering, which include biomaterials, bioactive factors and cells. Therefore, this review presents the latest literature reports on the properties of biomaterials enriched with platelet concentrates for applications in skin, nerve, cartilage and bone tissue engineering.
Collapse
Affiliation(s)
- Agnieszka Grzelak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Aleksandra Hnydka
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| | - Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Prymasa Tysiaclecia Avenue 98, 01-142 Warsaw, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4 a Street, 20-093 Lublin, Poland;
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
- Arthros Medical Centre, Chodzki 31 Street, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland; (A.G.); (A.H.)
| |
Collapse
|
14
|
Wang N, Mi Z, Chen S, Fang X, Xi Z, Xu W, Xie L. Analysis of global research hotspots and trends in immune cells in intervertebral disc degeneration: A bibliometric study. Hum Vaccin Immunother 2023; 19:2274220. [PMID: 37941392 PMCID: PMC10760394 DOI: 10.1080/21645515.2023.2274220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Intervertebral disc degeneration is an important pathological basis for spinal degenerative diseases. The imbalance of the immune microenvironment and the involvement of immune cells has been shown to lead to nucleus pulposus cells death. This article presents a bibliometric analysis of studies on immune cells in IDD in order to clarify the current status and hotspots. We searched the WOSCC, Scopus and PubMed databases from 01/01/2001 to 08/03/2023. We analyzed and visualized the content using software such as Citespace, Vosviewer and the bibliometrix. This study found that the number of annual publications is increasing year on year. The journal study found that Spine had the highest number of articles and citations. The country/regions analysis showed that China had the highest number of publications, the USA had the highest number of citations and total link strength. The institutional analysis found that Shanghai Jiao Tong University and Huazhong University of Science Technology had the highest number of publications, Tokai University had the highest citations, and the University of Bern had the highest total link strength. Sakai D and Risbud MV had the highest number of publications. Sakai D had the highest total link strength, and Risbud MV had the highest number of citations. The results of the keyword analysis suggested that the current research hotspots and future directions continue to be the study of the mechanisms of immune cells in IDD, the therapeutic role of immune cells in IDD and the role of immune cells in tissue engineering for IDD.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Zehua Mi
- Hospital for Skin Diseases, Institute of Dermatology Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Shuang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Xiaoyang Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Wenqiang Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
15
|
Liu Y, Zhao Z, Guo C, Huang Z, Zhang W, Ma F, Wang Z, Kong Q, Wang Y. Application and development of hydrogel biomaterials for the treatment of intervertebral disc degeneration: a literature review. Front Cell Dev Biol 2023; 11:1286223. [PMID: 38130952 PMCID: PMC10733535 DOI: 10.3389/fcell.2023.1286223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Low back pain caused by disc herniation and spinal stenosis imposes an enormous medical burden on society due to its high prevalence and refractory nature. This is mainly due to the long-term inflammation and degradation of the extracellular matrix in the process of intervertebral disc degeneration (IVDD), which manifests as loss of water in the nucleus pulposus (NP) and the formation of fibrous disc fissures. Biomaterial repair strategies involving hydrogels play an important role in the treatment of intervertebral disc degeneration. Excellent biocompatibility, tunable mechanical properties, easy modification, injectability, and the ability to encapsulate drugs, cells, genes, etc. make hydrogels good candidates as scaffolds and cell/drug carriers for treating NP degeneration and other aspects of IVDD. This review first briefly describes the anatomy, pathology, and current treatments of IVDD, and then introduces different types of hydrogels and addresses "smart hydrogels". Finally, we discuss the feasibility and prospects of using hydrogels to treat IVDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Vun J, Iqbal N, Jones E, Ganguly P. Anti-Aging Potential of Platelet Rich Plasma (PRP): Evidence from Osteoarthritis (OA) and Applications in Senescence and Inflammaging. Bioengineering (Basel) 2023; 10:987. [PMID: 37627872 PMCID: PMC10451843 DOI: 10.3390/bioengineering10080987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Aging and age-related changes impact the quality of life (QOL) in elderly with a decline in movement, cognitive abilities and increased vulnerability towards age-related diseases (ARDs). One of the key contributing factors is cellular senescence, which is triggered majorly by DNA damage response (DDR). Accumulated senescent cells (SCs) release senescence-associated secretory phenotype (SASP), which includes pro-inflammatory cytokines, matrix metalloproteinases (MMPs), lipids and chemokines that are detrimental to the surrounding tissues. Chronic low-grade inflammation in the elderly or inflammaging is also associated with cellular senescence and contributes to ARDs. The literature from the last decade has recorded the use of platelet rich plasma (PRP) to combat senescence and inflammation, alleviate pain as an analgesic, promote tissue regeneration and repair via angiogenesis-all of which are essential in anti-aging and tissue regeneration strategies. In the last few decades, platelet-rich plasma (PRP) has been used as an anti-aging treatment option for dermatological applications and with great interest in tissue regeneration for orthopaedic applications, especially in osteoarthritis (OA). In this exploration, we connect the intricate relationship between aging, ARDs, senescence and inflammation and delve into PRP's properties and potential benefits. We conduct a comparative review of the current literature on PRP treatment strategies, paying particular attention to the instances strongly linked to ARDs. Finally, upon careful consideration of this interconnected information in the context of aging, we suggest a prospective role for PRP in developing anti-aging therapeutic strategies.
Collapse
Affiliation(s)
- James Vun
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (J.V.); (E.J.)
- Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, University of Leeds, Leeds LS97TF, UK
| | - Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (J.V.); (E.J.)
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK; (J.V.); (E.J.)
| |
Collapse
|