1
|
Tammaro C, Plavec Z, Myllymäki L, Mitchell C, Consalvi S, Biava M, Ciogli A, Domanska A, Leppilampi V, Buckner C, Manetto S, Sciò P, Coluccia A, Laajala M, Dondio GM, Bigogno C, Marjomäki V, Butcher SJ, Poce G. SAR Analysis of Novel Coxsackie virus A9 Capsid Binders. J Med Chem 2024; 67:17144-17161. [PMID: 39292620 DOI: 10.1021/acs.jmedchem.4c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Enterovirus infections are common in humans, yet there are no approved antiviral treatments. In this study we concentrated on inhibition of one of the Enterovirus B (EV-B), namely Coxsackievirus A9 (CVA9), using a combination of medicinal chemistry, virus inhibition assays, structure determination from cryogenic electron microscopy and molecular modeling, to determine the structure activity relationships for a promising class of novel N-phenylbenzylamines. Of the new 29 compounds synthesized, 10 had half maximal effective concentration (EC50) values between 0.64-10.46 μM, and of these, 7 had 50% cytotoxicity concentration (CC50) values higher than 200 μM. In addition, this new series of compounds showed promising physicochemical properties and act through capsid stabilization, preventing capsid expansion and subsequent release of the genome.
Collapse
Affiliation(s)
- Chiara Tammaro
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Zlatka Plavec
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, & Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Laura Myllymäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40500 Jyväskylä, Finland
| | - Cristopher Mitchell
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, & Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Sara Consalvi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Mariangela Biava
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessia Ciogli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Aušra Domanska
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, & Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Valtteri Leppilampi
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, & Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Cienna Buckner
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, & Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Simone Manetto
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Pietro Sciò
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Coluccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| | - Mira Laajala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40500 Jyväskylä, Finland
| | | | | | - Varpu Marjomäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, 40500 Jyväskylä, Finland
| | - Sarah J Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, & Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Giovanna Poce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
2
|
Zhao H, Gao Z, Sun J, Qiao H, Zhao Y, Cui Y, Zhao B, Wang W, Chiu S, Chuai X. N6-Methyladenosine Positively Regulates Coxsackievirus B3 Replication. Viruses 2024; 16:1448. [PMID: 39339923 PMCID: PMC11437462 DOI: 10.3390/v16091448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses such as coxsackievirus B3 are identified as a common cause of viral myocarditis, but the potential mechanism of its replication and pathogenesis are largely unknown. The genomes of a variety of viruses contain N6-methyladenosine (m6A), which plays important roles in virus replication. Here, by using the online bioinformatics tools SRAMP and indirect immunofluorescence assay (IFA), we predict that the CVB3 genome contains m6A sites and found that CVB3 infection could alter the expression and cellular localization of m6A-related proteins. Moreover, we found that 3-deazaadenosine (3-DAA), an m6A modification inhibitor, significantly decreased CVB3 replication. We also observed that the m6A methyltransferases methyltransferase-like protein 3 (METTL3) and METTL14 play positive roles in CVB3 replication, whereas m6A demethylases fat mass and obesity-associated protein (FTO) or AlkB homolog 5 (ALKBH5) have opposite effects. Knockdown of the m6A binding proteins YTH domain family protein 1 (YTHDF1), YTHDF2 and YTHDF3 strikingly decreased CVB3 replication. Finally, the m6A site mutation in the CVB3 genome decreased the replication of CVB3 compared with that in the CVB3 wild-type (WT) strain. Taken together, our results demonstrated that CVB3 could exploit m6A modification to promote viral replication, which provides new insights into the mechanism of the interaction between CVB3 and the host.
Collapse
Affiliation(s)
- Hainian Zhao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhiyun Gao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jiawen Sun
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hongxiu Qiao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang 050017, China
| | - Yan Zhao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yan Cui
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Baoxin Zhao
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan 430207, China
| | - Weijie Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang 050017, China
| | - Sandra Chiu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xia Chuai
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega Science, Chinese Academy of Sciences, Wuhan 430207, China
| |
Collapse
|
3
|
Lu KC, Tsai KW, Hu WC. Role of TGFβ-producing regulatory T cells in scleroderma and end-stage organ failure. Heliyon 2024; 10:e35590. [PMID: 39170360 PMCID: PMC11336735 DOI: 10.1016/j.heliyon.2024.e35590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial immune cells that initiate a tolerable immune response. Transforming growth factor-beta (TGFβ) is a key cytokine produced by Tregs and plays a significant role in stimulating tissue fibrosis. Systemic sclerosis, an autoimmune disease characterized by organ fibrosis, is associated with an overrepresentation of regulatory T cells. This review aims to identify Treg-dominant tolerable host immune reactions and discuss their association with scleroderma and end-stage organ failure. End-stage organ failures, including heart failure, liver cirrhosis, uremia, and pulmonary fibrosis, are frequently linked to tissue fibrosis. This suggests that TGFβ-producing Tregs are involved in the pathogenesis of these conditions. However, the exact significance of TGFβ and the mechanisms through which it induces tolerable immune reactions during end-stage organ failure remain unclear. A deeper understanding of these mechanisms could lead to improved preventive and therapeutic strategies for these severe diseases.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan
| | - Wan-Chung Hu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan
- Department of Biotechnology, Ming Chuan University, Taoyuan City, 333, Taiwan
| |
Collapse
|
4
|
Dong Y, Shao E, Li S, Wang R, Wang D, Wang L, Yang H, He Y, Luan T, Chen Y, Wang Y, Lin L, Wang Y, Zhong Z, Zhao W. Baicalein suppresses Coxsackievirus B3 replication by inhibiting caspase-1 and viral protease 2A. Virol Sin 2024; 39:685-693. [PMID: 39025463 PMCID: PMC11401470 DOI: 10.1016/j.virs.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Myocarditis is an inflammatory disease of the cardiac muscle and one of the primary causes of dilated cardiomyopathy. Group B coxsackievirus (CVB) is one of the leading causative pathogens of viral myocarditis, which primarily affects children and young adults. Due to the lack of vaccines, the development of antiviral medicines is crucial to controlling CVB infection and the progression of myocarditis. In this study, we investigated the antiviral effect of baicalein, a flavonoid extracted from Scutellaria baicaleinsis. Our results demonstrated that baicalein treatment significantly reduced cytopathic effect and increased cell viability in CVB3-infected cells. In addition, significant reductions in viral protein 3D, viral RNA, and viral particles were observed in CVB3-infected cells treated with baicalein. We found that baicalein exerted its inhibitory effect in the early stages of CVB3 infection. Baicalein also suppressed viral replication in the myocardium and effectively alleviated myocarditis induced by CVB3 infection. Our study revealed that baicalein exerts its antiviral effect by inhibiting the activity of caspase-1 and viral protease 2A. Taken together, our findings demonstrate that baicalein has antiviral activity against CVB3 infection and may serve as a potential therapeutic option for the myocarditis caused by enterovirus infection.
Collapse
Affiliation(s)
- Yanyan Dong
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Enze Shao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Siwei Li
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Ruiqi Wang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Dan Wang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Lixin Wang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Hong Yang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Yingxia He
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Tian Luan
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Lexun Lin
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
5
|
Wang T, Wang S, Jia X, Li C, Ma X, Tong H, Liu M, Li L. Baicalein alleviates cardiomyocyte death in EAM mice by inhibiting the JAK-STAT1/4 signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155558. [PMID: 38547614 DOI: 10.1016/j.phymed.2024.155558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND The experimental autoimmune myocarditis (EAM) model is valuable for investigating myocarditis pathogenesis. M1-type macrophages and CD4+T cells exert key pathogenic effects on EAM initiation and progression. Baicalein (5,6,7-trihydroxyflavone, C15H10O5, BAI), which is derived from the Scutellaria baicalensis root, is a primary bioactive compound with potent anti-inflammatory and antioxidant properties. BAI exerts good therapeutic effects against various autoimmune diseases; however, its effect in EAM has not been thoroughly researched. PURPOSE This study aimed to explore the possible inhibitory effect of BAI on M1 macrophage polarisation and CD4+T cell differentiation into Th1 cells via modulation of the JAK-STAT1/4 signalling pathway, which reduces the secretion of pro-inflammatory factors, namely, TNF-α and IFN-γ, and consequently inhibits TNF-α- and IFN-γ-triggered apoptosis in cardiomyocytes of the EAM model mice. STUDY DESIGN AND METHODS Flow cytometry, immunofluorescence, real-time quantitative polymerase chain reaction (q-PCR), and western blotting were performed to determine whether BAI alleviated M1/Th1-secreted TNF-α- and IFN-γ-induced myocyte death in the EAM model mice through the inhibition of the JAK-STAT1/4 signalling pathway. RESULTS These results indicate that BAI intervention in mice resulted in mild inflammatory infiltrates. BAI inhibited JAK-STAT1 signalling in macrophages both in vivo and in vitro, which attenuated macrophage polarisation to the M1 type and reduced TNF-α secretion. Additionally, BAI significantly inhibited the differentiation of CD4+T cells to Th1 cells and IFN-γ secretion both in vivo and in vitro by modulating the JAK-STAT1/4 signalling pathway. This ultimately led to decreased TNF-α and IFN-γ levels in cardiac tissues and reduced myocardial cell apoptosis. CONCLUSION This study demonstrates that BAI alleviates M1/Th1-secreted TNF-α- and IFN-γ-induced cardiomyocyte death in EAM mice by inhibiting the JAK-STAT1/4 signalling pathway.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Shuang Wang
- Department of Biochemistry, School of Basic Medical, Qingdao University, Qingdao, China
| | - Xihui Jia
- Department of Biochemistry, School of Basic Medical, Qingdao University, Qingdao, China
| | - Chenglin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Xiaoran Ma
- School of Medicine, Qing dao Binhai University, Qingdao, China
| | - Huimin Tong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Meng Liu
- Department of Biochemistry, School of Basic Medical, Qingdao University, Qingdao, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China.
| |
Collapse
|
6
|
Yi L, Yang Y, Hu Y, Wu Z, Kong M, Zuoyuan B, Xin X, Yang Z. Complement components regulates ferroptosis in CVB3 viral myocarditis by interatction with TFRC. Free Radic Biol Med 2024; 212:349-359. [PMID: 38169212 DOI: 10.1016/j.freeradbiomed.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Dysregulated cell death machinery and an excessive inflammatory response in Coxsackievirus B3(CVB3)-infected myocarditis are hallmarks of an abnormal host response. Complement C4 and C3 are considered the central components of the classical activation pathway and often participate in the response process in the early stages of virus infection. METHODS In our study, we constructed a mouse model of CVB3-related viral myocarditis via intraperitoneal injection of Fer-1 and detected myocarditis and ferroptosis markers in the mouse myocardium. Then, we performed co-IP and protein mass spectrometry analyses to explore which components interact with the ferroptosis gene transferrin receptor (TFRC). Finally, functional experiments were conducted to verify the role of complement components in regulating ferroptosis in CVB3 infection. RESULTS It showed that the ferroptosis inhibitor Fer-1 could alleviate the inflammation in viral myocarditis as well as ferroptosis. Mechanistically, during CVB3 infection, the key factor TFRC was activated and inhibited by Fer-1. Fer-1 effectively prevented the consumption of complement C3 and overload of the complement product C4b. Interestingly, we found that TFRC directly interacts with complement C4, leading to an increase in the product of C4b and a decrease in the downstream complement C3. Functional experiments have also confirmed that regulating the complement C4/C3 pathway can effectively rescue cell ferroptosis caused by CVB3 infection. CONCLUSIONS In this study, we found that ferroptosis occurs through crosstalk with complement C4 in viral myocarditis through interaction with TFRC and that regulating the complement C4/C3 pathway may rescue ferroptosis in CVB3-infected cardiomyocytes.
Collapse
Affiliation(s)
- Lu Yi
- The first affiliated hospital, Department of Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yezhen Yang
- Department of ophthalmology,Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Yanan Hu
- Department of Pediatrics,Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Zhixiang Wu
- Department of Pediatrics,Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Min Kong
- Department of Pediatrics,Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Bojiao Zuoyuan
- Department of Pediatrics,Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Xiaowei Xin
- Center for Experimental Medicine, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Zuocheng Yang
- Department of Pediatrics,Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|