1
|
Su H, Chen S, Chen X, Guo M, Liu H, Sun B. Utilizing a high-throughput visualization screening technology to develop a genetically encoded biosensor for monitoring 5-aminolevulinic acid production in engineered Escherichia coli. Biosens Bioelectron 2025; 267:116806. [PMID: 39353369 DOI: 10.1016/j.bios.2024.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a non-protein amino acid widely used in agriculture, animal husbandry and medicine. Currently, microbial cell factories are a promising production pathway, but the lack of high-throughput fermentation strain screening tools often hinders the exploration of engineering strategies to increase cell factory yields. Here, mutant AC103-3H was screened from libraries of saturating mutants after response-specific engineering of the transcription factor AsnC of L-asparagine (Asn). Based on mutant AC103-3H, a whole-cell biosensor EAC103-3H with a specific response to 5-ALA was constructed, which has a linear dynamic detection range of 1-12 mM and a detection limit of 0.094 mM, and can be used for in situ screening of potential high-producing 5-ALA strains. With its support, overexpression of the C5 pathway genes using promoter engineering assistance resulted in a 4.78-fold enhancement of 5-ALA production in the engineered E. coli. This study provides an efficient strain screening tool for exploring approaches to improve the 5-ALA productivity of engineered strains.
Collapse
Affiliation(s)
- Hongfei Su
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Shijing Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Xiaolin Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Mingzhang Guo
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| |
Collapse
|
2
|
Pradanas-González F, Cortés MG, Glahn-Martínez B, Del Barrio M, Purohit P, Benito-Peña E, Orellana G. Biosensing strategies using recombinant luminescent proteins and their use for food and environmental analysis. Anal Bioanal Chem 2024:10.1007/s00216-024-05552-x. [PMID: 39325139 DOI: 10.1007/s00216-024-05552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Progress in synthetic biology and nanotechnology plays at present a major role in the fabrication of sophisticated and miniaturized analytical devices that provide the means to tackle the need for new tools and methods for environmental and food safety. Significant research efforts have led to biosensing experiments experiencing a remarkable growth with the development and application of recombinant luminescent proteins (RLPs) being at the core of this boost. Integrating RLPs into biosensors has resulted in highly versatile detection platforms. These platforms include luminescent enzyme-linked immunosorbent assays (ELISAs), bioluminescence resonance energy transfer (BRET)-based sensors, and genetically encoded luminescent biosensors. Increased signal-to-noise ratios, rapid response times, and the ability to monitor dynamic biological processes in live cells are advantages inherent to the approaches mentioned above. Furthermore, novel fusion proteins and optimized expression systems to improve their stability, brightness, and spectral properties have enhanced the performance and pertinence of luminescent biosensors in diverse fields. This review highlights recent progress in RLP-based biosensing, showcasing their implementation for monitoring different contaminants commonly found in food and environmental samples. Future perspectives and potential challenges in these two areas of interest are also addressed, providing a comprehensive overview of the current state and a forecast of the biosensing strategies using recombinant luminescent proteins to come.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Marta García Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Melisa Del Barrio
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Pablo Purohit
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain.
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain.
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| |
Collapse
|
3
|
Salcedo-Arancibia F, Gutiérrez M, Chavoya A. Design, modeling and in silico simulation of bacterial biosensors for detecting heavy metals in irrigation water for precision agriculture. Heliyon 2024; 10:e35050. [PMID: 39170417 PMCID: PMC11336265 DOI: 10.1016/j.heliyon.2024.e35050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Sensors used in precision agriculture for the detection of heavy metals in irrigation water are generally expensive and sometimes their deployment and maintenance represent a permanent investment to keep them in operation, leaving a lasting polluting footprint in the environment at the end of their lifespan. This represents an area of opportunity to design new biological devices that can replace part, or all of the sensors currently used. In this article, a novel workflow is proposed to fully carry out the complete process of design, modeling, and simulation of reprogrammable microorganisms in silico. As a proof-of-concept, the workflow has been used to design three whole-cell biosensors for the detection of heavy metals in irrigation water, namely arsenic, mercury and lead. These biosensors are in compliance with the concentration limits established by the World Health Organization (WHO). The proposed workflow allows the design of a wide variety of completely in silico biodevices, which aids in solving problems that cannot be easily addressed with classical computing. The workflow is based on two technologies typical of synthetic biology: the design of synthetic genetic circuits, and in silico synthetic engineering, which allows us to address the design of reprogrammable microorganisms using software and hardware to develop theoretical models. These models enable the behavior prediction of complex biological systems. The output of the workflow is then exported in the form of complete genomes in SBOL, GenBank and FASTA formats, enabling their subsequent in vivo implementation in a laboratory. The present proposal enables professionals in the area of computer science to collaborate in biotechnological processes from a theoretical perspective previously or complementary to a design process carried out directly in the laboratory by molecular biologists. Therefore, key results pertaining to this work include the fully in silico workflow that leads to designs that can be tested in the lab in vitro or in vivo, and a proof-of-concept of how the workflow generates synthetic circuits in the form of three whole-cell heavy metal biosensors that were designed, modeled and simulated using the workflow. The simulations carried out show realistic spatial distributions of biosensors reacting to different concentrations (zero, low and threshold level) of heavy metal presence and at different growth phases (stationary and exponential) that are backed up by the whole design and modeling phases of the workflow.
Collapse
Affiliation(s)
- Francisco Salcedo-Arancibia
- Universidad de Guadalajara, Centro Universitario de Ciencias Económico Administrativas, Departamento de Sistemas de Información, Periférico Norte No. 799, Núcleo Universitario Los Belenes, Zapopan, Jalisco, CP 45100, Mexico
| | - Martín Gutiérrez
- Universidad Diego Portales, Escuela de Informática y Telecomunicaciones, Ejército No. 441, Santiago, CP 837 0007, Chile
| | - Arturo Chavoya
- Universidad de Guadalajara, Centro Universitario de Ciencias Económico Administrativas, Departamento de Sistemas de Información, Periférico Norte No. 799, Núcleo Universitario Los Belenes, Zapopan, Jalisco, CP 45100, Mexico
| |
Collapse
|
4
|
Huang Z, Gustave W, Bai S, Li Y, Li B, Elçin E, Jiang B, Jia Z, Zhang X, Shaheen SM, He F. Challenges and opportunities in commercializing whole-cell bioreporters in environmental application. ENVIRONMENTAL RESEARCH 2024; 262:119801. [PMID: 39147190 DOI: 10.1016/j.envres.2024.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Since the initial introduction of whole-cell bioreporters (WCBs) nearly 30 years ago, their high sensitivity, selectivity, and suitability for on-site detection have rendered them highly promising for environmental monitoring, medical diagnosis, food safety, biomanufacturing, and other fields. Especially in the environmental field, the technology provides a fast and efficient way to assess the bioavailability of pollutants in the environment. Despite these advantages, the technology has not been commercialized. This lack of commercialization is confusing, given the broad application prospects of WCBs. Over the years, numerous research papers have focused primarily on enhancing the sensitivity and selectivity of WCBs, with little attention paid to their wider commercial applications. So far, there is no a critical review has been published yet on this topic. Therefore, in this article we critically reviewed the research progress of WCBs over the past three decades, assessing the performance and limitations of current systems to understand the barriers to commercial deployment. By identifying these obstacles, this article provided researchers and industry stakeholders with deeper insights into the challenges hindering market entry and inspire further research toward overcoming these barriers, thereby facilitating the commercialization of WCBs as a promising technology for environmental monitoring.
Collapse
Affiliation(s)
- Zefeng Huang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau, 4912, Bahamas
| | - Shanshan Bai
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yongshuo Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China; Meadows Center for Water and the Environment, Texas State University, San Marcos, TX, 78666, USA
| | - Evrim Elçin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, 09970, Turkey
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhemin Jia
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Environmental Sciences, Department of Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Feng He
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Calvanese M, D’Angelo C, Tutino ML, Lauro C. Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments. Mar Drugs 2024; 22:299. [PMID: 39057408 PMCID: PMC11277574 DOI: 10.3390/md22070299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Iron is a key micronutrient essential for various essential biological processes. As a consequence, alteration in iron concentration in seawater can deeply influence marine biodiversity. In polar marine environments, where environmental conditions are characterized by low temperatures, the role of iron becomes particularly significant. While iron limitation can negatively influence primary production and nutrient cycling, excessive iron concentrations can lead to harmful algal blooms and oxygen depletion. Furthermore, the growth of certain phytoplankton species can be increased in high-iron-content environments, resulting in altered balance in the marine food web and reduced biodiversity. Although many chemical/physical methods are established for inorganic iron quantification, the determination of the bio-available iron in seawater samples is more suitably carried out using marine microorganisms as biosensors. Despite existing challenges, whole-cell biosensors offer other advantages, such as real-time detection, cost-effectiveness, and ease of manipulation, making them promising tools for monitoring environmental iron levels in polar marine ecosystems. In this review, we discuss fundamental biosensor designs and assemblies, arranging host features, transcription factors, reporter proteins, and detection methods. The progress in the genetic manipulation of iron-responsive regulatory and reporter modules is also addressed to the optimization of the biosensor performance, focusing on the improvement of sensitivity and specificity.
Collapse
Affiliation(s)
- Marzia Calvanese
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| |
Collapse
|
6
|
Zhang J, Guo Y, Lin YR, Ma BC, Ge XR, Zhang WQ, Zhang NX, Yang SM, Hui CY. Detection of Cadmium in Human Biospecimens by a Cadmium-Selective Whole-Cell Biosensor Based on Deoxyviolacein. ACS Biomater Sci Eng 2024; 10:4046-4058. [PMID: 38722544 DOI: 10.1021/acsbiomaterials.3c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cadmium poses a severe health risk, impacting various bodily systems. Monitoring human exposure is vital. Urine and blood cadmium serve as critical biomarkers. However, current urine and blood cadmium detection methods are expensive and complex. Being cost-effective, user-friendly, and efficient, visual biosensing offers a promising complement to existing techniques. Therefore, we constructed a cadmium whole-cell biosensor using CadR10 and deoxyviolacein pigment in this study. We assessed the sensor for time-dose response, specific response to cadmium, sensitivity response to cadmium, and stability response to cadmium. The results showed that (1) the sensor had a preferred signal-to-noise ratio when the incubation time was 4 h; (2) the sensor showed excellent specificity for cadmium compared to the group 12 metals and lead; (3) the sensor was responsive to cadmium down to 1.53 nM under experimental conditions and had good linearity over a wide range from 1.53 nM to 100 μM with good linearity (R2 = 0.979); and (4) the sensor had good stability. Based on the excellent results of the performance tests, we developed a cost-effective, high-throughput method for detecting urinary and blood cadmium. Specifically, this was realized by adding the blood or urine samples into the culture system in a particular proportion. Then, the whole-cell biosensor was subjected to culture, n-butanol extraction, and microplate reading. The results showed that (1) at 20% urine addition ratio, the sensor had an excellent curvilinear relationship (R2 = 0.986) in the range of 3.05 nM to 100 μM, and the detection limit could reach 3.05 nM. (2) At a 10% blood addition ratio, the sensor had an excellent nonlinear relationship (R2 = 0.978) in the range of 0.097-50 μM, and the detection limit reached 0.195 μM. Overall, we developed a sensitive and wide-range method based on a whole-cell biosensor for the detection of cadmium in blood and urine, which has the advantages of being cost-effective, ease of operation, fast response, and low dependence on instrumentation and has the potential to be applied in the monitoring of cadmium exposure in humans as a complementary to the mainstream detection techniques.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Yi-Ran Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Bing-Chan Ma
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xue-Ru Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Wen-Qi Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Nai-Xing Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Shu-Man Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| |
Collapse
|
7
|
De Caroli M, Perrotta C, Rampino P. Development of a Whole-Cell System Based on the Use of Genetically Modified Protoplasts to Detect Nickel Ions in Food Matrices. Int J Mol Sci 2024; 25:6090. [PMID: 38892274 PMCID: PMC11172630 DOI: 10.3390/ijms25116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Heavy metals are dangerous contaminants that constitute a threat to human health because they persist in soils and are easily transferred into the food chain, causing damage to human health. Among heavy metals, nickel appears to be one of the most dangerous, being responsible for different disorders. Public health protection requires nickel detection in the environment and food chains. Biosensors represent simple, rapid, and sensitive methods for detecting nickel contamination. In this paper, we report on the setting up a whole-cell-based system, in which protoplasts, obtained from Nicotiana tabacum leaves, were used as transducers to detect the presence of heavy metal ions and, in particular, nickel ions. Protoplasts were genetically modified with a plasmid containing the Green Fluorescent Protein reporter gene (GFP) under control of the promoter region of a sunflower gene coding for a small Heat Shock Protein (HSP). Using this device, the presence of heavy metal ions was detected. Thus, the possibility of using this whole-cell system as a novel tool to detect the presence of nickel ions in food matrices was assessed.
Collapse
Affiliation(s)
- Monica De Caroli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni 165, 73100 Lecce, Italy; (M.D.C.); (C.P.)
- NBFC National Biodiversity Future Center, 90133 Palermo, Italy
| | - Carla Perrotta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni 165, 73100 Lecce, Italy; (M.D.C.); (C.P.)
| | - Patrizia Rampino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni 165, 73100 Lecce, Italy; (M.D.C.); (C.P.)
| |
Collapse
|
8
|
Zevallos-Aliaga D, De Graeve S, Obando-Chávez P, Vaccari NA, Gao Y, Peeters T, Guerra DG. Highly Sensitive Whole-Cell Mercury Biosensors for Environmental Monitoring. BIOSENSORS 2024; 14:246. [PMID: 38785720 PMCID: PMC11117708 DOI: 10.3390/bios14050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we designed a synthetic genetic circuit specifically tailored for detecting ionic mercury, which we applied to environmental samples collected from artisanal gold mining sites in Peru. We developed two distinct versions of the biosensor, each utilizing a different reporter protein: a fluorescent biosensor (Mer-RFP) and a colorimetric biosensor (Mer-Blue). Mer-RFP enabled real-time monitoring of the culture's response to mercury samples using a plate reader, whereas Mer-Blue was analysed for colour accumulation at the endpoint using a specially designed, low-cost camera setup for harvested cell pellets. Both biosensors exhibited negligible baseline expression of their respective reporter proteins and responded specifically to HgBr2 in pure water. Mer-RFP demonstrated a linear detection range from 1 nM to 1 μM, whereas Mer-Blue showed a linear range from 2 nM to 125 nM. Our biosensors successfully detected a high concentration of ionic mercury in the reaction bucket where artisanal miners produce a mercury-gold amalgam. However, they did not detect ionic mercury in the water from active mining ponds, indicating a concentration lower than 3.2 nM Hg2+-a result consistent with chemical analysis quantitation. Furthermore, we discuss the potential of Mer-Blue as a practical and affordable monitoring tool, highlighting its stability, reliance on simple visual colorimetry, and the possibility of sensitivity expansion to organic mercury.
Collapse
Affiliation(s)
- Dahlin Zevallos-Aliaga
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.Z.-A.); (P.O.-C.); (N.A.V.)
| | - Stijn De Graeve
- Open BioLab Brussels, Erasmushogeschool Brussel, Laarbeeklaan 121, B-1090 Jette, Belgium
| | - Pamela Obando-Chávez
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.Z.-A.); (P.O.-C.); (N.A.V.)
| | - Nicolás A. Vaccari
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.Z.-A.); (P.O.-C.); (N.A.V.)
| | - Yue Gao
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Tom Peeters
- Open BioLab Brussels, Erasmushogeschool Brussel, Laarbeeklaan 121, B-1090 Jette, Belgium
| | - Daniel G. Guerra
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.Z.-A.); (P.O.-C.); (N.A.V.)
| |
Collapse
|
9
|
Guo M, Chen X, Chen S, Su H, Liu H, Xie G, Sun B. Replacing manual operation with bio-automation: A high-throughput evolution strategy to construct an integrated whole-cell biosensor for the simultaneous detection of methylmercury and mercury ions without manual sample digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133492. [PMID: 38227998 DOI: 10.1016/j.jhazmat.2024.133492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Methylmercury is primarily responsible for most food mercury pollution cases. However, most biosensors developed for mercury pollution analysis can only detect mercury ions. Although oxidative strong-acid digestion or microwave-assisted digestion can convert methylmercury into mercury ions, it is unsuitable for on-site detection. This study designed a bio-digestion gene circuit and integrated it into a mercury ion whole-cell biosensor,creating a novel on-site methylmercury detection method. Five alkyl mercury lyases from different bacterial genomes were screened via bioinformatics analysis, of which goMerB from Gordonia otitis showed the highest catalytic biological digestion efficiency. The goMerB site-specific saturation and random mutation libraries were constructed. After two rounds of high-throughput visualization screening, the catalytic activity of the mutant increased 2.5-fold. The distance between the three crucial amino acid sites and methylmercury changed in the mutant, which likely contributed to the enhanced catalytic efficiency. The optimized whole-cell biosensor showed a linear dynamic concentration range of 100 nM to 100 μM (R2 =0.991), satisfactory specificity, and interference resistance. The detection limit of the goMerBt6-MerR-RFP biosensor was 0.015 μM, while the limit of quantitation was 0.049 μM. This study demonstrated the application of synthetic biology for food safety detection and highlighted the future potential of "Lab in a Cell" for hazard analysis.
Collapse
Affiliation(s)
- Mingzhang Guo
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaolin Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Shijing Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Hongfei Su
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Gang Xie
- Academy of National Food and Strategic Reserves Administration, Beijing 430079, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| |
Collapse
|
10
|
Tseilikman VE, Shatilov VA, Zhukov MS, Buksha IA, Epitashvily AE, Lipatov IA, Aristov MR, Koshelev AG, Karpenko MN, Traktirov DS, Maistrenko VA, Kamel M, Buhler AV, Kovaleva EG, Kalinina TS, Pashkov AA, Kon’kov VV, Novak J, Tseilikman OB. Limited Cheese Intake Paradigm Replaces Patterns of Behavioral Disorders in Experimental PTSD: Focus on Resveratrol Supplementation. Int J Mol Sci 2023; 24:14343. [PMID: 37762647 PMCID: PMC10532287 DOI: 10.3390/ijms241814343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/27/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, the efficacy of drug therapy for post-traumatic stress disorder or PTSD leaves much to be desired, making nutraceutical support a promising avenue for treatment. Recent research has identified the protective effects of resveratrol in PTSD. Here, we tested the behavioral and neurobiological effects of combining cheese consumption with resveratrol supplements in an experimental PTSD model. Using the elevated plus maze test, we observed that cheese intake resulted in a shift from anxiety-like behavior to depressive behavior, evident in increased freezing acts. However, no significant changes in the anxiety index value were observed. Interestingly, supplementation with cheese and resveratrol only led to the elimination of freezing behavior in half of the PTSD rats. We further segregated the rats into two groups based on freezing behavior: Freezing+ and Freezing0 phenotypes. Resveratrol ameliorated the abnormalities in Monoamine Oxidize -A and Brain-Derived Neurotrophic Factor gene expression in the hippocampus, but only in the Freezing0 rats. Moreover, a negative correlation was found between the number of freezing acts and the levels of Monoamine Oxidize-A and Brain-Derived Neurotrophic Factor mRNAs in the hippocampus. The study results show promise for resveratrol supplementation in PTSD treatment. Further research is warranted to better understand the underlying mechanisms and optimize the potential benefits of resveratrol supplementation for PTSD.
Collapse
Affiliation(s)
- Vadim E. Tseilikman
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
| | - Vladislav A. Shatilov
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Maxim S. Zhukov
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Irina A. Buksha
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Alexandr E. Epitashvily
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Ilya A. Lipatov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Maxim R. Aristov
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Alexandr G. Koshelev
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| | - Marina N. Karpenko
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (M.N.K.); (D.S.T.)
| | - Dmitrii S. Traktirov
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (M.N.K.); (D.S.T.)
| | - Viktoriya A. Maistrenko
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (M.N.K.); (D.S.T.)
| | - Mustapha Kamel
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Research, Educational and Innovative Center of Chemical and Pharmaceutical Technologies Chemical Technology Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia;
| | - Alexey V. Buhler
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Research, Educational and Innovative Center of Chemical and Pharmaceutical Technologies Chemical Technology Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia;
| | - Elena G. Kovaleva
- Research, Educational and Innovative Center of Chemical and Pharmaceutical Technologies Chemical Technology Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia;
| | - Tatyana S. Kalinina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Anton A. Pashkov
- Federal Neurosurgical Center, 630048 Novosibirsk, Russia;
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, 630087 Novosibirsk, Russia
| | - Vadim V. Kon’kov
- Zelman Institute of Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Center for Artificial Intelligence and Cyber Security, University of Rijeka, 51000 Rijeka, Croatia
| | - Olga B. Tseilikman
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (V.A.S.); (M.S.Z.); (M.R.A.); (V.A.M.); (A.V.B.)
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (I.A.B.); (I.A.L.); (A.G.K.)
| |
Collapse
|