1
|
Shimizu J, Sasaki T, Ong GH, Koketsu R, Samune Y, Nakayama EE, Nagamoto T, Yamamoto Y, Miyazaki K, Shioda T. IFN-γ derived from activated human CD4 + T cells inhibits the replication of SARS-CoV-2 depending on cell-type and viral strain. Sci Rep 2024; 14:26660. [PMID: 39496837 PMCID: PMC11535250 DOI: 10.1038/s41598-024-77969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination elicit both T cell and B cell immune responses in immunocompetent individuals. However, the mechanisms underlying the antiviral effects mediated by CD4+ T cells are not fully understood. In this study, we analyzed the culture supernatant (SN) from polyclonally stimulated human CD4+ T cells as a model for soluble mediators derived from SARS-CoV-2-stimulated CD4+ T cells. Interestingly, this SN inhibited SARS-CoV-2 propagation in a viral strain- and host cell type-dependent manner. The original wild-type showed the highest susceptibility, whereas the Delta variant exhibited resistance in the human monocyte cell line. In addition, antibody-dependent enhancement (ADE) of infection with the original strain was also abolished in the presence of the SN. The findings showed that the inhibitory effect on viral propagation by the SN was mostly attributed to interferon-γ (IFN-γ) that was present in the SN. These results highlight the potential role of IFN-γ as an anti-SARS-CoV-2 mediator derived from CD4+ T cells, and suggest that we need to understand the SARS-CoV-2 strain-dependent sensitivity to IFN-γ in controlling clinical outcomes. In addition, characterization of new SARS-CoV-2 variants in terms of IFN-γ-sensitivity will have important implications for selecting therapeutic strategies.
Collapse
Affiliation(s)
- Jun Shimizu
- MiCAN Technologies Inc., KKVP 1-36, Goryo-Ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Tadahiro Sasaki
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Guang Han Ong
- MiCAN Technologies Inc., KKVP 1-36, Goryo-Ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Ritsuko Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Samune
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Tetsuharu Nagamoto
- HiLung Inc., Innovation Hub Kyoto, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
| | - Yuki Yamamoto
- HiLung Inc., Innovation Hub Kyoto, 46-29, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8304, Japan
| | - Kazuo Miyazaki
- MiCAN Technologies Inc., KKVP 1-36, Goryo-Ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan.
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Colaneri M, Fama F, Fassio F, Holmes D, Scaglione G, Mariani C, Galli L, Lai A, Antinori S, Gori A, Riva A, Schiavini M. Impact of early antiviral therapy on SARS-CoV-2 clearance time in high-risk COVID-19 subjects: A propensity score matching study. Int J Infect Dis 2024; 149:107265. [PMID: 39393523 DOI: 10.1016/j.ijid.2024.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Effective treatments for COVID-19 are needed to mitigate disease progression and reduce the burden on healthcare systems. This study investigates the impact of early treatments on SARS-CoV-2 viral shedding duration among high-risk individuals with mild symptoms. METHODS A single-center, retrospective observational study was conducted at Luigi Sacco Hospital in Milan from December 2021 to March 2023. Hospitalized and nonhospitalized adults with a confirmed SARS-CoV-2 infection and at high-risk of disease progression were enrolled. Unadjusted and adjusted negative binomial regression models and a Random Forest regression model were performed before and after matching subjects based on their propensity of being treated or not. RESULTS Results from 518 subjects (428 treated and 90 untreated) revealed a significant reduction in SARS-CoV-2 viral shedding duration among those who received early treatment compared to untreated individuals. Propensity score matching and multivariable regression analyses confirmed this finding. Early treatment significantly reduced the risk of COVID-19-related hospitalization and pneumonia development. Subgroup analysis identified COPD as a potential factor influencing effectiveness of early treatments. CONCLUSIONS Early treatments play a crucial role in reducing SARS-CoV-2 viral shedding and preventing disease progression among high-risk individuals. Shorter viral shedding duration also contributes to improved healthcare resource utilization and infection control measures.
Collapse
Affiliation(s)
- Marta Colaneri
- Department of Clinical Sciences, Infectious Diseases and Immunopathology, University of Milan, Luigi Sacco Hospital, Milan, Italy; Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Federico Fama
- Department of Clinical Sciences, Infectious Diseases and Immunopathology, University of Milan, Luigi Sacco Hospital, Milan, Italy; Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy.
| | - Federico Fassio
- Department of Public Health, Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Darcy Holmes
- Infectious Disease Unit Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Scaglione
- Department of Clinical Sciences, Infectious Diseases and Immunopathology, University of Milan, Luigi Sacco Hospital, Milan, Italy
| | - Chiara Mariani
- Department of Clinical Sciences, Infectious Diseases and Immunopathology, University of Milan, Luigi Sacco Hospital, Milan, Italy
| | - Lucia Galli
- Department of Clinical Sciences, Infectious Diseases and Immunopathology, University of Milan, Luigi Sacco Hospital, Milan, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Spinello Antinori
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Andrea Gori
- Department of Clinical Sciences, Infectious Diseases and Immunopathology, University of Milan, Luigi Sacco Hospital, Milan, Italy; Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Agostino Riva
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Schiavini
- Department of Clinical Sciences, Infectious Diseases and Immunopathology, University of Milan, Luigi Sacco Hospital, Milan, Italy
| |
Collapse
|
3
|
Zhang S, Tan S, Yang B, Wu Y, Yuan G, Chen F, Liu L. Efficacy of Azvudine Therapy in Patients with Severe and Non-Severe COVID-19: A Propensity Score-Matched Analysis. Infect Drug Resist 2024; 17:4317-4325. [PMID: 39399885 PMCID: PMC11469939 DOI: 10.2147/idr.s481591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Objective Azvudine is used to treat patients with the coronavirus disease 2019 (COVID-19). This study evaluated the clinical efficacy of azvudine in hospitalized patients with different severities of COVID-19 because few studies have described this in patients with severe and non-severe COVID-19. Methods This retrospective study included hospitalized patients with COVID-19 in Guizhou Provincial People's Hospital between December 2022 and January 2023. Azvudine-treated patients and controls were matched for sex, age, and disease severity at admission. Laboratory results and outcomes, including all-cause mortality, invasive mechanical ventilation, intensive care unit admission, and hospital stay length, were evaluated. Stratified analysis was used to explore the difference in the efficacy of azvudine in severe and non-severe COVID-19 patients. Results No significant differences in all-cause mortality were observed between the 303 azvudine recipients and 303 matched controls. However, azvudine-treated patients had shorter hospital stays (8.34±4.79 vs 9.17±6.25 days, P=0.046) and higher lymphocyte improvement rates (21.5% vs 13.9%, P=0.019), with a more pronounced effect in patients with non-severe COVID-19 (length of hospital stay, 8.07±4.35 vs 10.00±6.29 days, P=0.001; lymphocyte improvement rate, 23.8% vs 12.8%, P=0.015). Conclusion Azvudine treatment shortens hospital stay length and increases the rate of lymphocyte count improvement in patients with non-severe COVID-19, suggesting that azvudine may be a treatment option for these patients.
Collapse
Affiliation(s)
- Siqin Zhang
- Department of Endocrinology and Metabolism, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Songsong Tan
- Department of Endocrinology and Metabolism, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Bin Yang
- Department of Central Laboratory, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Yaoyao Wu
- Department of Respiratory and Critical Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Guohang Yuan
- Department of Respiratory and Critical Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Fengjiao Chen
- Research Department, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
| | - Lin Liu
- Department of Respiratory and Critical Medicine, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, 550002, People’s Republic of China
- NHC Key Laboratory of Pulmonary Immunological Diseases (Guizhou Provincial People’s Hospital), Guiyang, Guizhou, 550002, People’s Republic of China
| |
Collapse
|
4
|
Di Lenarda A, Ferri N, Lanzafame M, Montuori EA, Pacelli L. Cardiovascular Drug Interactions with Nirmatrelvir/Ritonavir for COVID-19: Considerations for Daily Practice. Eur Cardiol 2024; 19:e15. [PMID: 39220617 PMCID: PMC11363061 DOI: 10.15420/ecr.2024.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/03/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular disease is associated with progression to severe COVID-19 and patients with the condition are among those in whom early antiviral therapy should be warranted. The combination of nirmatrelvir/ritonavir (Paxlovid®) has been approved for clinical use by the Food and Drug Administration and European Medicines Agency. Because patients with cardiovascular disease are often on polypharmacy, physicians need to be aware of potential drug-drug interactions (DDIs) when treating COVID-19 with nirmatrelvir/ritonavir. Guidance is given for avoiding DDIs, emphasising that preventing and managing potential DDIs with nirmatrelvir/ritonavir requires thorough assessment and knowledge. The present review summarises the clinical pharmacology of nirmatrelvir/ritonavir and provides details on potential DDIs with a focus on daily practice in patients with cardiovascular disease. Particular attention is needed for drugs that are predominantly metabolised by cytochrome P450 3A4, are substrates of P-glycoprotein and have a narrow therapeutic index. Proper management of potential DDIs must balance the benefit of nirmatrelvir/ ritonavir to prevent severe disease with the risk of serious adverse events.
Collapse
Affiliation(s)
- Andrea Di Lenarda
- Cardiovascular Center, Territory Specialist Department, Azienda Sanitaria Universitaria Giuliano Isontina – ASUGITrieste, Italy
| | - Nicola Ferri
- Department of Medicine, University of PadovaPadua, Italy
- Veneto Institute of Molecular Medicine (VIMM)Padua, Italy
| | | | | | | |
Collapse
|
5
|
Sun Y, Xin J, Xu Y, Wang X, Zhao F, Niu C, Liu S. Research Progress on Sesquiterpene Compounds from Artabotrys Plants of Annonaceae. Molecules 2024; 29:1648. [PMID: 38611927 PMCID: PMC11013193 DOI: 10.3390/molecules29071648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Artabotrys, a pivotal genus within the Annonaceae family, is renowned for its extensive biological significance and medicinal potential. The genus's sesquiterpene compounds have attracted considerable interest from the scientific community due to their structural complexity and diverse biological activities. These compounds exhibit a range of biological activities, including antimalarial, antibacterial, anti-inflammatory analgesic, and anti-tumor properties, positioning them as promising candidates for medical applications. This review aims to summarize the current knowledge on the variety, species, and structural characteristics of sesquiterpene compounds isolated from Artabotrys plants. Furthermore, it delves into their pharmacological activities and underlying mechanisms, offering a comprehensive foundation for future research.
Collapse
Affiliation(s)
- Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| |
Collapse
|
6
|
Melis R, Braca A, Pagnozzi D, Anedda R. The metabolic footprint of Vero E6 cells highlights the key metabolic routes associated with SARS-CoV-2 infection and response to drug combinations. Sci Rep 2024; 14:7950. [PMID: 38575586 PMCID: PMC10995198 DOI: 10.1038/s41598-024-57726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
SARS-CoV-2 burdens healthcare systems worldwide, yet specific drug-based treatments are still unavailable. Understanding the effects of SARS-CoV-2 on host molecular pathways is critical for providing full descriptions and optimizing therapeutic targets. The present study used Nuclear Magnetic Resonance-based metabolic footprinting to characterize the secreted cellular metabolite levels (exometabolomes) of Vero E6 cells in response to SARS-CoV-2 infection and to two candidate drugs (Remdesivir, RDV, and Azithromycin, AZI), either alone or in combination. SARS-CoV-2 infection appears to force VE6 cells to have increased glucose concentrations from extra-cellular medium and altered energetic metabolism. RDV and AZI, either alone or in combination, can modify the glycolic-gluconeogenesis pathway in the host cell, thus impairing the mitochondrial oxidative damage caused by the SARS-CoV-2 in the primary phase. RDV treatment appears to be associated with a metabolic shift toward the TCA cycle. Our findings reveal a metabolic reprogramming produced by studied pharmacological treatments that protects host cells against virus-induced metabolic damage, with an emphasis on the glycolytic-gluconeogenetic pathway. These findings may help researchers better understand the relevant biological mechanisms involved in viral infection, as well as the creation of mechanistic hypotheses for such candidate drugs, thereby opening up new possibilities for SARS-CoV-2 pharmacological therapy.
Collapse
Affiliation(s)
- Riccardo Melis
- Porto Conte Ricerche s.r.l., S.P. 55 Porto Conte-Capo Caccia, Km 8.400 Loc. Tramariglio, Alghero, SS, Italy
| | - Angela Braca
- Porto Conte Ricerche s.r.l., S.P. 55 Porto Conte-Capo Caccia, Km 8.400 Loc. Tramariglio, Alghero, SS, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche s.r.l., S.P. 55 Porto Conte-Capo Caccia, Km 8.400 Loc. Tramariglio, Alghero, SS, Italy
| | - Roberto Anedda
- Porto Conte Ricerche s.r.l., S.P. 55 Porto Conte-Capo Caccia, Km 8.400 Loc. Tramariglio, Alghero, SS, Italy.
| |
Collapse
|
7
|
Hoseininezhad-Namin MS, Rahimpour E, Jouyban A. Favipiravir, remdesivir, and lopinavir: metabolites, degradation products and their analytical methods. Drug Metab Rev 2024; 56:127-144. [PMID: 38445647 DOI: 10.1080/03602532.2024.2326415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Severe acute respiratory syndrome 2 (SARS-CoV-2) caused the emergence of the COVID-19 pandemic all over the world. Several studies have suggested that antiviral drugs such as favipiravir (FAV), remdesivir (RDV), and lopinavir (LPV) may potentially prevent the spread of the virus in the host cells and person-to-person transmission. Simultaneously with the widespread use of these drugs, their stability and action mechanism studies have also attracted the attention of many researchers. This review focuses on the action mechanism, metabolites and degradation products of these antiviral drugs (FAV, RDV and LPV) and demonstrates various methods for their quantification and discrimination in the different biological samples. Herein, the instrumental methods for analysis of the main form of drugs or their metabolite and degradation products are classified into two types: optical and chromatography methods which the last one in combination with various detectors provides a powerful method for routine and stability analyses. Some representative studies are reported in this review and the details of them are carefully explained. It is hoped that this review will be a good guideline study and provide a better understanding of these drugs from the aspects investigated in this study.
Collapse
Affiliation(s)
- Mir Saleh Hoseininezhad-Namin
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Franchini M, Focosi D. Hyperimmune Plasma and Immunoglobulins against COVID-19: A Narrative Review. Life (Basel) 2024; 14:214. [PMID: 38398723 PMCID: PMC10890293 DOI: 10.3390/life14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Since late 2019, the new SARS-CoV-2 virus belonging to the Coronaviridae family has been responsible for COVID-19 pandemic, a severe acute respiratory syndrome. Several antiviral therapies, mostly derived from previous epidemics, were initially repurposed to fight this not rarely life-threatening respiratory illness. Among them, however, the only specific antibody-based therapy available against SARS-CoV-2 infection during the first year of the pandemic was represented by COVID-19 convalescent plasma (CCP). CCP, collected from recovered individuals, contains high levels of polyclonal antibodies of different subclasses able to neutralize SARS-CoV-2 infection. Tens of randomized controlled trials have been conducted during the last three years of the pandemic to evaluate the safety and the clinical efficacy of CCP in both hospitalized and ambulatory COVID-19 patients, whose main results will be summarized in this narrative review. In addition, we will present the current knowledge on the development of anti-SARS-CoV-2 hyperimmune polyclonal immunoglobulins.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| |
Collapse
|
9
|
Pavan MF, Bok M, Betanzos San Juan R, Malito JP, Marcoppido GA, Franco DR, Militelo DA, Schammas JM, Bari SE, Stone W, López K, Porier DL, Muller JA, Auguste AJ, Yuan L, Wigdorovitz A, Parreño VG, Ibañez LI. SARS-CoV-2 Specific Nanobodies Neutralize Different Variants of Concern and Reduce Virus Load in the Brain of h-ACE2 Transgenic Mice. Viruses 2024; 16:185. [PMID: 38399961 PMCID: PMC10892724 DOI: 10.3390/v16020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.
Collapse
Affiliation(s)
- María Florencia Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Rafael Betanzos San Juan
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina;
| | - Juan Pablo Malito
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Gisela Ariana Marcoppido
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (G.A.M.); (D.R.F.)
| | - Diego Rafael Franco
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (G.A.M.); (D.R.F.)
| | - Daniela Ayelen Militelo
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| | - Juan Manuel Schammas
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Sara Elizabeth Bari
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| | - William Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - Krisangel López
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - Danielle LaBrie Porier
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - John Anthony Muller
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
| | - Albert Jonathan Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (W.S.); (K.L.); (D.L.P.); (J.A.M.); (A.J.A.)
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Lijuan Yuan
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Andrés Wigdorovitz
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
| | - Viviana Gladys Parreño
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires ZC 1686, Argentina; (M.B.); (J.P.M.); (A.W.)
- Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT-CONICET), Hurlingham, Buenos Aires ZC 1686, Argentina;
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lorena Itat Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires ZC 1428, Argentina; (M.F.P.); (D.A.M.); (S.E.B.)
| |
Collapse
|
10
|
Binsuwaidan R, El-Masry TA, El-Sheekh M, Seadawy MG, Makhlof MEM, Aboukhatwa SM, El-Shitany NA, Elmorshedy KE, El-Nagar MMF, El-Bouseary MM. Prospective Antiviral Effect of Ulva lactuca Aqueous Extract against COVID-19 Infection. Mar Drugs 2023; 22:30. [PMID: 38248655 PMCID: PMC10817659 DOI: 10.3390/md22010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Marine algal extracts exhibit a potent inhibitory effect against several enveloped and non-enveloped viruses. The infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has several adverse effects, including an increased mortality rate. The anti-COVID-19 agents are still limited; this issue requires exploring novel, effective anti-SARS-CoV-2 therapeutic approaches. This study investigated the antiviral activity of an aqueous extract of Ulva lactuca, which was collected from the Gulf of Suez, Egypt. The aqueous extract of Ulva lactuca was characterized by high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Energy Dispersive X-ray (EDX) analyses. According to the HPLC analysis, the extract comprises several sugars, mostly rhamnose (32.88%). The FTIR spectra showed numerous bands related to the functional groups. EDX analysis confirmed the presence of different elements, such as oxygen (O), carbon (C), sulfur (S), magnesium (Mg), potassium (K), calcium (Ca), and sodium (Na), with different concentrations. The aqueous extract of U. lactuca (0.0312 mg/mL) exhibited potent anti-SARS-CoV-2 activity via virucidal activity, inhibition of viral replication, and interference with viral adsorption (% inhibitions of 64%, 33.3%, and 31.1%, respectively). Consequently, ulvan could be a promising compound for preclinical study in the drug development process to combat SARS-CoV-2.
Collapse
Affiliation(s)
- Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | | | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt;
| | - Shaimaa M. Aboukhatwa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Nagla A. El-Shitany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | | | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Maisra M. El-Bouseary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
11
|
Ao D, He X, Liu J, Xu L. Strategies for the development and approval of COVID-19 vaccines and therapeutics in the post-pandemic period. Signal Transduct Target Ther 2023; 8:466. [PMID: 38129394 PMCID: PMC10739883 DOI: 10.1038/s41392-023-01724-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant casualties and put immense strain on public health systems worldwide, leading to economic recession and social unrest. In response, various prevention and control strategies have been implemented globally, including vaccine and drug development and the promotion of preventive measures. Implementing these strategies has effectively curbed the transmission of the virus, reduced infection rates, and gradually restored normal social and economic activities. However, the mutations of SARS-CoV-2 have led to inevitable infections and reinfections, and the number of deaths continues to rise. Therefore, there is still a need to improve existing prevention and control strategies, mainly focusing on developing novel vaccines and drugs, expediting medical authorization processes, and keeping epidemic surveillance. These measures are crucial to combat the Coronavirus disease (COVID-19) pandemic and achieve sustained, long-term prevention, management, and disease control. Here, we summarized the characteristics of existing COVID-19 vaccines and drugs and suggested potential future directions for their development. Furthermore, we discussed the COVID-19-related policies implemented over the past years and presented some strategies for the future.
Collapse
Affiliation(s)
- Danyi Ao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Jian Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China
| | - Li Xu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Kambe R, Sato M, Uehara D, Iizuka Y, Kakizaki S. Prolonged SARS-CoV-2 infection during obinutuzumab and bendamustine treatment for follicular lymphoma: A case report. Clin Case Rep 2023; 11:e7861. [PMID: 37649899 PMCID: PMC10462774 DOI: 10.1002/ccr3.7861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
Key Clinical Message SARS-CoV-2 infection has been associated with a prolonged course and a poor prognosis in patients who receive anti-CD20 antibodies. However, there are no established treatments for such patients. Serial changes in the SARS-CoV-2 antigen titer during the clinical course and treatment strategies for immunosuppressed patients are discussed. Abstract We report a case of prolonged SARS-CoV-2 infection during obinutuzumab and bendamustine treatment for follicular lymphoma. Four years previously, the patient had been diagnosed with follicular lymphoma (Stage IIIA, Grade 2). She received several chemotherapy regimens, including rituximab and radiation therapy. Although these therapies achieved complete response temporally, they did not continue and recurred at 8 months before. Obinutuzumab and bendamustine therapy was selected, and she received five courses of obinutuzumab and bendamustine. She also received a SARS-CoV-2 mRNA vaccine two times. Although she did not have any symptoms, a routine check-up just before the 6th course of obinutuzumab and bendamustine revealed SARS-CoV-2 infection. Because she was immunosuppressed and was considered to be at high risk for the exacerbation of her disease, molnupiravir was immediately administered, and her SARS-CoV-2 antigen decreased. However, it was not completely cleared and flared-up at 6 weeks, with symptoms of COVID-19 appearing. Despite intensive treatment for SARS-CoV-2 infection, including remdesivir, baricitinib, tocilizumab and intravenous immunoglobulin, her SARS-CoV-2 antigen titer never became negative, and she finally died of respiratory failure caused by prolonged SARS-CoV-2 infection. Serial changes in the SARS-CoV-2 antigen titer during the clinical course and treatment strategies for immunosuppressed patients are discussed.
Collapse
Affiliation(s)
- Ryosuke Kambe
- Department of General Internal MedicineNational Hospital Organization Takasaki General Medical CenterTakasakiGunmaJapan
| | - Masamichi Sato
- Department of General Internal MedicineNational Hospital Organization Takasaki General Medical CenterTakasakiGunmaJapan
| | - Daisuke Uehara
- Department of General Internal MedicineNational Hospital Organization Takasaki General Medical CenterTakasakiGunmaJapan
| | - Yutaka Iizuka
- Department of General Internal MedicineNational Hospital Organization Takasaki General Medical CenterTakasakiGunmaJapan
| | - Satoru Kakizaki
- Department of Clinical ResearchNational Hospital Organization Takasaki General Medical CenterTakasakiGunmaJapan
| |
Collapse
|
13
|
Gidari A, Sabbatini S, Schiaroli E, Bastianelli S, Pierucci S, Busti C, Saraca LM, Capogrossi L, Pasticci MB, Francisci D. Synergistic Activity of Remdesivir-Nirmatrelvir Combination on a SARS-CoV-2 In Vitro Model and a Case Report. Viruses 2023; 15:1577. [PMID: 37515263 PMCID: PMC10385213 DOI: 10.3390/v15071577] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND This study aims to investigate the activity of the remdesivir-nirmatrelvir combination against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and to report a case of Coronavirus Disease 2019 (COVID-19) cured with this combination. METHODS A Vero E6 cell-based infection assay was used to investigate the in vitro activity of the remdesivir-nirmatrelvir combination. The SARS-CoV-2 strains tested were 20A.EU1, BA.1 and BA.5. After incubation, a viability assay was performed. The supernatants were collected and used for viral titration. The Highest Single Agent (HSA) reference model was calculated. An HSA score >10 is considered synergic. RESULTS Remdesivir and nirmatrelvir showed synergistic activity at 48 and 72 h, with an HSA score of 52.8 and 28.6, respectively (p < 0.0001). These data were confirmed by performing supernatant titration and against the omicron variants: the combination reduced the viral titer better than the more active compound alone. An immunocompromised patient with prolonged and critical COVID-19 was successfully treated with remdesivir, nirmatrelvir/ritonavir, tixagevimab/cilgavimab and dexamethasone, with an excellent clinical-radiological response. However, she required further off-label prolonged therapy with nirmatrelvir/ritonavir until she tested negative. CONCLUSIONS Remdesivir-nirmatrelvir combination has synergic activity in vitro. This combination may have a role in immunosuppressed patients with severe COVID-19 and prolonged viral shedding.
Collapse
Affiliation(s)
- Anna Gidari
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
- Clinic of Infectious Diseases, "Santa Maria" Hospital, Terni, 05100 Terni, Italy
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06123 Perugia, Italy
| | - Elisabetta Schiaroli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Sabrina Bastianelli
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Sara Pierucci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Chiara Busti
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Lavinia Maria Saraca
- Clinic of Infectious Diseases, "Santa Maria" Hospital, Terni, 05100 Terni, Italy
| | - Luca Capogrossi
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| | - Maria Bruna Pasticci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
- Clinic of Infectious Diseases, "Santa Maria" Hospital, Terni, 05100 Terni, Italy
| | - Daniela Francisci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|