1
|
Lyu S, Fang Z, Hu Y, Zhang M, He J, Wang X, He J, Gao X, Wang H, Xu D, Wang Q. IL-37 Isoform A Prevents Collagen-Induced Arthritis in Mice by Modulating the Th17/Treg Balance via IL1R8 Receptors. Int J Mol Sci 2024; 25:12878. [PMID: 39684587 DOI: 10.3390/ijms252312878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Cytokines play a complex and pivotal role in modulating synovitis in rheumatoid arthritis. Interleukin (IL)-37 is known for its extensive anti-inflammatory properties that set it apart from the majority of other IL-1 family members. However, IL-37a, a member of the IL-37 family, lacks research into rheumatoid arthritis. This research aims to explore the role of IL-37a in regulating T-cell homeostasis in rheumatoid arthritis using the Collagen-Induced Arthritis(CIA) model. IL-37atg mice, a genetically altered strain carrying the human IL-37a gene, were used to test the influence of this cytokine on the progression of arthritis. The results show that IL-37atg mice demonstrated a notable reduction in both the incidence and severity of arthritis relative to WT mice. The protective effect was accompanied by lower levels of cytokines in plasma and synovial tissues (such as IL-17A and IL1β) that drive the inflammatory response. The ratio of Th17/Treg decreased in the lymph nodes of IL-37atg mice. However, the knockout of IL1R8 in IL37atg mice eliminated the effects of IL-37a. Additionally, transcriptomic analysis revealed that Th17 cell differentiation is a key pathway through which IL-37a exerts its protective effects, and experiments confirmed that IL-37a suppresses Th17-polarizing in vitro.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Th17 Cells/immunology
- Th17 Cells/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Interleukin-1/metabolism
- Interleukin-1/genetics
- Mice
- Humans
- Interleukin-18 Receptor alpha Subunit/metabolism
- Interleukin-18 Receptor alpha Subunit/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Mice, Knockout
- Male
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/pathology
- Mice, Inbred C57BL
- Cytokines/metabolism
- Cell Differentiation
Collapse
Affiliation(s)
- Shuyan Lyu
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhengyu Fang
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yiping Hu
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Miaomiao Zhang
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jiaxin He
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiaocheng Wang
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Juan He
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xu Gao
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hongli Wang
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Damo Xu
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Qingwen Wang
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
2
|
Wang D, Zhang B, Liu X, Kan LLY, Leung PC, Wong CK. Agree to disagree: The contradiction between IL-18 and IL-37 reveals shared targets in cancer. Pharmacol Res 2024; 200:107072. [PMID: 38242220 DOI: 10.1016/j.phrs.2024.107072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
IL-37 is a newly discovered member of the IL-1 cytokine family which plays an important role in regulating inflammation and maintaining physiological homeostasis. IL-37 showed a close relationship with IL-18, another key cytokine in inflammation regulation and cancer development. IL-37 affects the function of IL-18 either by binding to IL-18Rα, a key subunit of both IL-37 and IL-18 receptor, or by drastically neutralizing the IL-18 protein expression of IL-18 binding protein, an important natural inhibitory molecule of IL-18. Moreover, as another subunit receptor of IL-37, IL-1R8 can suppress IL-18Rα expression, functioning as a surveillance mechanism to prevent overactivation of both IL-18 and IL-37 signaling pathways. While IL-18 and IL-37 share the same receptor subunit, IL-18 would in turn interfere with IL-37 signal transduction by binding to IL-18Rα. It is also reported that IL-18 and IL-37 demonstrated opposing effects in a variety of cancers, such as glioblastoma, lung cancer, leukemia, and hepatocellular cancer. Although the mutual regulation of IL-18 and IL-37 and their diametrically opposed effects in cancers has been reported, IL-18 has not been taken into consideration when interpreting clinical findings and conducting mechanism investigations related to IL-37 in cancer. We aim to review the recent progress in IL-18 and IL-37 research in cancer and summarize the correlation between IL-18 and IL-37 in cancer based on their expression level and underlying mechanisms, which would provide new insights into elucidating the conflicting roles of IL-18 and IL-37 in cancer and bring new ideas for translational research related to IL-18 and IL-37.
Collapse
Affiliation(s)
- Dongjie Wang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Bitian Zhang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaolin Liu
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Lea Ling-Yu Kan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Wei R, Han X, Li M, Ji Y, Zhang L, Christodoulou MI, Hameed Aga NJ, Zhang C, Gao R, Liu J, Fu J, Lu G, Xiao X, Liu X, Yang PC, McInnes IB, Sun Y, Gao P, Qin C, Huang SK, Zhou Y, Xu D. The nuclear cytokine IL-37a controls lethal cytokine storms primarily via IL-1R8-independent transcriptional upregulation of PPARγ. Cell Mol Immunol 2023; 20:1428-1444. [PMID: 37891333 PMCID: PMC10687103 DOI: 10.1038/s41423-023-01091-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Cytokine storms are crucial in the development of various inflammatory diseases, including sepsis and autoimmune disorders. The immunosuppressive cytokine INTERLEUKIN (IL)-37 consists of five isoforms (IL-37a-e). We identified IL-37a as a nuclear cytokine for the first time. Compared to IL-37b, IL-37a demonstrated greater efficacy in protecting against Toll-like receptor-induced cytokine hypersecretion and lethal endotoxic shock. The full-length (FL) form of IL-37a and the N-terminal fragment, which is processed by elastase, could translocate into cell nuclei through a distinctive nuclear localization sequence (NLS)/importin nuclear transport pathway. These forms exerted their regulatory effects independent of the IL-1R8 receptor by transcriptionally upregulating the nuclear receptor peroxisome proliferator-activated receptor (PPARγ). This process involved the recruitment of the H3K4 methyltransferase complex WDR5/MLL4/C/EBPβ and H3K4me1/2 to the enhancer/promoter of Pparg. The receptor-independent regulatory pathway of the nuclear IL-37a-PPARγ axis and receptor-dependent signaling by secreted IL-37a maintain homeostasis and are potential therapeutic targets for various inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Rongfei Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biom--acromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Han
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengyuan Li
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Yuan Ji
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Maria-Ioanna Christodoulou
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, 2404, Cyprus
| | | | - Caiyan Zhang
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ran Gao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jiangning Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Jinrong Fu
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaoyu Liu
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ping-Chang Yang
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ying Sun
- Department of Immunology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Peisong Gao
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China.
| | - Shau-Ku Huang
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan, China.
| | - Yufeng Zhou
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- State-level Regional Children's Medical Center, Children's Hospital of Fudan University at Xiamen (Xiamen Children's Hospital), Fujian Provincial Key Laboratory of Neonatal Diseases, Xiamen, China.
| | - Damo Xu
- Department of General Practice Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Institute of Allergy and Immunology, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|