1
|
Niu L, Ouyang XK, Ling J, Wang N. Hyaluronic acid-based ε-polylysine/polyurethane asymmetric sponge for enhanced wound healing. Int J Biol Macromol 2024; 281:136395. [PMID: 39383918 DOI: 10.1016/j.ijbiomac.2024.136395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Asymmetric sponge dressings with a hydrophobic surface and a hydrophilic inner layer can prevent bacterial infiltration and ensure efficient absorption of wound exudate. In this work, ε-polylysine/aliphatic polyurethane sponge (EPU) was prepared by prepolymer foaming process, and oxidized hyaluronic acid (OHA) was cross-linked with ε-polylysine (EPL) in EPU through schiff-base reaction to obtain EHPU. Octaisobutyl polyhedral oligomeric silsesquioxane (Oi-POSS) was uniformly sprayed onto the surface of EHPU as the hydrophobic layer, resulting in asymmetric sponge dressings denoted as P-EHPU. These dressings demonstrate capabilities in resisting staining and bacterial invasion, with internal EPL effectively inhibiting bacterial proliferation on the wound surface. The introduction of OHA and EPL leads to a denser and more complete pore structure of the sponge, endowing it with good compression, tensile strength, and hemostatic performance. Wound healing studies indicate that P-EHPU effectively prevents external bacterial infiltration and promotes wound healing.
Collapse
Affiliation(s)
- Liting Niu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
2
|
Chen Y, Gong W, Zhang Z, Zhou J, Yu DG, Yi T. Reverse Gradient Distributions of Drug and Polymer Molecules within Electrospun Core-Shell Nanofibers for Sustained Release. Int J Mol Sci 2024; 25:9524. [PMID: 39273471 PMCID: PMC11395202 DOI: 10.3390/ijms25179524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Core-shell nanostructures are powerful platforms for the development of novel nanoscale drug delivery systems with sustained drug release profiles. Coaxial electrospinning is facile and convenient for creating medicated core-shell nanostructures with elaborate designs with which the sustained-release behaviors of drug molecules can be intentionally adjusted. With resveratrol (RES) as a model for a poorly water-soluble drug and cellulose acetate (CA) and PVP as polymeric carriers, a brand-new electrospun core-shell nanostructure was fabricated in this study. The guest RES and the host CA molecules were designed to have a reverse gradient distribution within the core-shell nanostructures. Scanning electron microscope and transmission electron microscope evaluations verified that these nanofibers had linear morphologies, without beads or spindles, and an obvious core-shell double-chamber structure. The X-ray diffraction patterns and Fourier transform infrared spectroscopic results indicated that the involved components were highly compatible and presented in an amorphous molecular distribution state. In vitro dissolution tests verified that the new core-shell structures were able to prevent the initial burst release, extend the continuous-release time period, and reduce the negative tailing-off release effect, thus ensuring a better sustained-release profile than the traditional blended drug-loaded nanofibers. The mechanism underlying the influence of the new core-shell structure with an RES/CA reverse gradient distribution on the behaviors of RES release is proposed. Based on this proof-of-concept demonstration, a series of advanced functional nanomaterials can be similarly developed based on the gradient distributions of functional molecules within electrospun multi-chamber nanostructures.
Collapse
Affiliation(s)
- Yaoning Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenjian Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jianfeng Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao Yi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macau 999078, China
| |
Collapse
|
3
|
Mottola S, Viscusi G, Belvedere R, Petrella A, De Marco I, Gorrasi G. Production of mono and bilayer devices for wound dressing by coupling of electrospinning and supercritical impregnation techniques. Int J Pharm 2024; 660:124308. [PMID: 38848800 DOI: 10.1016/j.ijpharm.2024.124308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
In this paper, electrospinning and supercritical impregnation were coupled to produce polyurethane fibrous membranes loaded with mesoglycan and lactoferrin. The proposed methodology allowed the production of three skin wound healing bilayer systems: a first system containing mesoglycan loaded through electrospinning and lactoferrin loaded by supercritical impregnation, a second system where the use of the two techniques was reversed, and a third sample where the drugs were both encapsulated through a one-step process. SEM analysis demonstrated the formation of microfibers with a homogeneous drug distribution. The highest loadings were 0.062 g/g for mesoglycan and 0.013 g/g for lactoferrin. Then, hydrophilicity and liquid retention analyses were carried out to evaluate the possibility of using the manufacturers as active patches. The kinetic profiles, obtained through in vitro tests conducted using a Franz diffusion cell, proved that the diffusion of the active drugs followed a double-step release before attaining the equilibrium after about 30 h. When the electrospun membranes were placed in contact with HUVEC, HaCaT, and BJ cell lines, as human endothelial cells, keratinocytes, and fibroblasts, respectively, no cytotoxic events were assessed. Finally, the capacity of the most promising system to promote the healing process was performed by carrying out scratch tests on HaCat cells.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
4
|
Mottola S, De Marco I. Supercritical Antisolvent Precipitation of Corticosteroids/β-Cyclodextrin Inclusion Complexes. Polymers (Basel) 2023; 16:29. [PMID: 38201694 PMCID: PMC10780522 DOI: 10.3390/polym16010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, corticosteroid-β-cyclodextrin (β-CD) inclusion complexes were prepared by using supercritical antisolvent (SAS) precipitation to enhance the dissolution rate of dexamethasone (DEX) and prednisolone (PRED), which are poorly water soluble drugs. The processing of the active principles in the absence of a carrier led to their almost complete extraction (the small amount of obtained material precipitates in the form of crystals). The coprecipitation of the ingredients in the presence of β-CD was investigated at different concentrations, pressures, and molar ratios. For both the corticosteroids, the optimized operating conditions were 40 °C, 120 bar, an equimolar ratio, and a concentration in DMSO of 20 mg/mL; these conditions led to the attainment of microparticles with mean diameters equal to 0.197 ± 0.180 μm and 0.131 ± 0.070 μm in the case of DEX and PRED, respectively. Job's method confirmed the formation of inclusion complexes with a 1/1 mol/mol ratio. Compared to the pure ingredients, the obtained powders have an improved release rate, which is about three times faster in both cases. The release curves obtained under the best operating conditions were fitted using different models. The best fitting was obtained using the Weibull model, whose parameters are compatible with a combined release mechanism involving Fickian diffusion and controlled release.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
5
|
Liang W, Ni N, Huang Y, Lin C. An Advanced Review: Polyurethane-Related Dressings for Skin Wound Repair. Polymers (Basel) 2023; 15:4301. [PMID: 37959982 PMCID: PMC10649939 DOI: 10.3390/polym15214301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The inability of wounds to heal effectively through normal repair has become a burden that seriously affects socio-economic development and human health. The therapy of acute and chronic skin wounds still poses great clinical difficulty due to the lack of suitable functional wound dressings. It has been found that dressings made of polyurethane exhibit excellent and diverse biological properties, but lack the functionality of clinical needs, and most dressings are unable to dynamically adapt to microenvironmental changes during the healing process at different stages of chronic wounds. Therefore, the development of multifunctional polyurethane composite materials has become a hot topic of research. This review describes the changes in physicochemical and biological properties caused by the incorporation of different polymers and fillers into polyurethane dressings and describes their applications in wound repair and regeneration. We listed several polymers, mainly including natural-based polymers (e.g., collagen, chitosan, and hyaluronic acid), synthetic-based polymers (e.g., polyethylene glycol, polyvinyl alcohol, and polyacrylamide), and some other active ingredients (e.g., LL37 peptide, platelet lysate, and exosomes). In addition to an introduction to the design and application of polyurethane-related dressings, we discuss the conversion and use of advanced functional dressings for applications, as well as future directions for development, providing reference for the development and new applications of novel polyurethane dressings.
Collapse
Affiliation(s)
| | | | | | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, China; (W.L.); (N.N.); (Y.H.)
| |
Collapse
|