1
|
Pang X, Chen J, Li L, Huang W, Liu J. Deciphering Drought Resilience in Solanaceae Crops: Unraveling Molecular and Genetic Mechanisms. BIOLOGY 2024; 13:1076. [PMID: 39765746 PMCID: PMC11673024 DOI: 10.3390/biology13121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
The Solanaceae family, which includes vital crops such as tomatoes, peppers, eggplants, and potatoes, is increasingly impacted by drought due to climate change. Recent research has concentrated on unraveling the molecular mechanisms behind drought resistance in these crops, with a focus on abscisic acid (ABA) signaling pathways, transcription factors (TFs) like MYB (Myeloblastosis), WRKY (WRKY DNA-binding protein), and NAC (NAM, ATAF1/2, and CUC2- NAM: No Apical Meristem, ATAF1/2, and CUC2: Cup-shaped Cotyledon), and the omics approaches. Moreover, transcriptome sequencing (RNA-seq) has been instrumental in identifying differentially expressed genes (DEGs) crucial for drought adaptation. Proteomics studies further reveal changes in protein expression under drought conditions, elucidating stress response mechanisms. Additionally, microRNAs (miRNAs) have been identified as key regulators in drought response. Advances in proteomics and transcriptomics have highlighted key proteins and genes that respond to drought stress, offering new insights into drought tolerance. To address the challenge of drought, future research should emphasize the development of drought-resistant varieties through precision breeding techniques such as gene editing, marker-assisted selection (MAS), and the integration of artificial intelligence. Additionally, the adoption of environmentally sustainable cultivation practices, including precision irrigation and the use of anti-drought agents, is crucial for improving water-use efficiency and crop resilience. International collaboration and data sharing will be essential to accelerate progress and ensure global food security in increasingly arid conditions. These efforts will enable Solanaceae crops to adapt the challenges posed by climate change, ensuring their productivity and sustainability.
Collapse
Affiliation(s)
- Xin Pang
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China; (X.P.); (J.C.); (L.L.)
| | - Jun Chen
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China; (X.P.); (J.C.); (L.L.)
| | - Linzhi Li
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China; (X.P.); (J.C.); (L.L.)
| | - Wenjuan Huang
- Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China;
| | - Jia Liu
- Wulanchabu Academy of Agricultural and Forestry Sciences, Wulanchabu 012000, China;
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Bortolami G, de Werk TA, Larter M, Thonglim A, Mueller-Roeber B, Balazadeh S, Lens F. Integrating gene expression analysis and ecophysiological responses to water deficit in leaves of tomato plants. Sci Rep 2024; 14:29024. [PMID: 39578554 PMCID: PMC11584733 DOI: 10.1038/s41598-024-80261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Soil water deficit (WD) significantly impacts plant survival and crop yields. Many gaps remain in our understanding of the synergistic coordination between molecular and ecophysiological responses delaying substantial drought-induced effects on plant growth. To investigate this synergism in tomato leaves, we combined molecular, ecophysiological, and anatomical methods to examine gene expression patterns and physio-anatomical characteristics during a progressing WD experiment. Four sampling points were selected for transcriptomic analysis based on the key ecophysiological responses of the tomato leaves: 4 and 5 days after WD (d-WD), corresponding to 10% and 90% decrease in leaf stomatal conductance; 8 d-WD, the leaf wilting point; and 10 d-WD, when air embolism blocks 12% of the leaf xylem water transport. At 4 d-WD, upregulated genes were mostly linked to ABA-independent responses, with larger-scale ABA-dependent responses occurring at 5 d-WD. At 8 d-WD, we observed an upregulation of heat shock transcription factors, and two days later (10 d-WD), we found a strong upregulation of oxidative stress transcription factors. Finally, we found that young leaves present a stronger dehydration tolerance than mature leaves at the same drought intensity level, presumably because young leaves upregulate genes related to increased callose deposition resulting in limiting water loss to the phloem, and related to increased cell rigidity by modifying cell wall structures. This combined dataset will serve as a framework for future studies that aim to obtain a more holistic WD plant response at the molecular, ecophysiological and anatomical level.
Collapse
Affiliation(s)
- G Bortolami
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Plant Ecology Research Laboratory, School of Architecture, Civil and Environmental Engineering, 1015, Lausanne, Switzerland
| | - T A de Werk
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - M Larter
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands
- BIOGECO, INRAE, Université de Bordeaux, 33615, Pessac, France
| | - A Thonglim
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands
| | - B Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - S Balazadeh
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany.
- Institute Biology Leiden, Sylvius Laboratory, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - F Lens
- Naturalis Biodiversity Center, Research Group Functional Traits, PO Box 9517, 2300 RA, Leiden, The Netherlands.
- Institute Biology Leiden, Sylvius Laboratory, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
3
|
Li R, Luo D, Rehman M, Li X, Wang C, Cao S, Xu G, Wang M, Chen C, Nie J, Li R, Chen T, Chen P. Seed priming using different agents can alleviate salt stress in kenaf ( Hibiscus cannabinus L.) by activating antioxidant system and related genes expression. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1741-1757. [PMID: 39506993 PMCID: PMC11534967 DOI: 10.1007/s12298-024-01521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/18/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024]
Abstract
High salinity is an abiotic stress that limits crop production. Kenaf (Hibiscus cannabinus L.) is an annual fiber crop of the genus Hibiscus in the family Malvaceae with a certain tolerance to salt stress. Seed priming has been shown to ameliorate the adverse effects of salt stress on plants. However, the salt resistance mechanism in kenaf seeds treated with priming agents is not fully understood. In this study, we used four priming agents (H2O, PEG, ABA, KNO3) in different concentrations to treat kenaf seeds, and subjected the induced kenaf seedlings to salt stress (150 mM NaCl) to measure their agronomic traits and physiological and biochemical indicators. Our results indicate that the optimal priming concentration for PEG was 10%, 0.5 μM for ABA, and 0.5% for KNO3. Under these treatment concentrations, the germination rate of kenaf was significantly increased, and the fresh weight was also increased by 35.1%, 33.39%, 20.78% and 15.3%, respectively. Furthermore, the use of priming agents can alleviate the adverse effects of salt stress to a certain extent, significantly increase the agronomic indicators such as plant height, stem thickness, and leaf area of kenaf, enhance the ability of plants to perform photosynthesis, further improve the activity of antioxidant enzymes and increase the content of osmotic material, and reduce the accumulation of cell H2O2, O2 - and MDA. Meanwhile, seed priming can also enhance the expression of HcSOS1, HcNHX, HcHKT, HcCBL, HcCIPK, HcPD and HcNCED involved in the salt stress pathway. These results warrant that seed priming can reduce the adverse effects of salt stress on kenaf. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01521-x.
Collapse
Affiliation(s)
- Renxue Li
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Dengjie Luo
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Muzammal Rehman
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Xin Li
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Caijin Wang
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Shan Cao
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Guofeng Xu
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Meng Wang
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Canni Chen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Jingzhi Nie
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, 530004 China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, 530004 China
| | - Peng Chen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004 China
| |
Collapse
|
4
|
Dong S, Zhang J, Ling J, Xie Z, Song L, Wang Y, Zhao L, Zhao T. Comparative analysis of physical traits, mineral compositions, antioxidant contents, and metabolite profiles in five cherry tomato cultivars. Food Res Int 2024; 194:114897. [PMID: 39232525 DOI: 10.1016/j.foodres.2024.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Cherry tomatoes (Solanum lycopersicum var. cerasiforme) are cultivated and consumed worldwide. While numerous cultivars have been bred to enhance fruit quality, few studies have comprehensively evaluated the fruit quality of cherry tomato cultivars. In this study, we assessed fruits of five cherry tomato cultivars (Qianxi, Fengjingling, Fushan88, Yanyu, and Qiyu) at the red ripe stage through detailed analysis of their physical traits, mineral compositions, antioxidant contents, and metabolite profiles. Significant variations were observed among the cultivars in terms of fruit size, shape, firmness, weight, glossiness, and sepal length, with each cultivar displaying unique attributes. Mineral analysis revealed distinct patterns of essential and trace element accumulation, with notable differences in calcium, sodium, manganese, and selenium concentrations. Fenjingling was identified as a selenium enriched cultivar. Analysis of antioxidant contents highlighted Yanyu as particularly rich in vitamin C and Fenjingling as having elevated antioxidant enzyme activities. Metabolomics analysis identified a total number of 3,396 annotated metabolites, and the five cultivars showed distinct metabolomics profiles. Amino acid analysis showed Fushan88 to possess a superior profile, while sweetness and tartness assessments indicated that Yanyu exhibited higher total soluble solids (TSS) and acidity. Notably, red cherry tomato cultivars (Fushan88, Yanyu, and Qiyu) accumulated significantly higher levels of eugenol and α-tomatine, compounds associated with undesirable flavors, compared to pink cultivars (Qianxi and Fengjingling). Taken together, our results provide novel insights into the physical traits, nutritional value, and flavor-associated metabolites of cherry tomatoes, offering knowledge that could be implemented for the breeding, cultivation, and marketing of cherry tomato cultivars.
Collapse
Affiliation(s)
- Shuchao Dong
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China
| | - Jingwen Zhang
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210000, China
| | - Jiayi Ling
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225100, China
| | - Zixin Xie
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210000, China
| | - Liuxia Song
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China
| | - Yinlei Wang
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China
| | - Liping Zhao
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China.
| | - Tongmin Zhao
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China.
| |
Collapse
|
5
|
Shu J, Zhang L, Liu G, Wang X, Liu F, Zhang Y, Chen Y. Transcriptome Analysis and Metabolic Profiling Reveal the Key Regulatory Pathways in Drought Stress Responses and Recovery in Tomatoes. Int J Mol Sci 2024; 25:2187. [PMID: 38396864 PMCID: PMC10889177 DOI: 10.3390/ijms25042187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024] Open
Abstract
Drought stress is a major abiotic factor affecting tomato production and fruit quality. However, the genes and metabolites associated with tomato responses to water deficiency and rehydration are poorly characterized. To identify the functional genes and key metabolic pathways underlying tomato responses to drought stress and recovery, drought-susceptible and drought-tolerant inbred lines underwent transcriptomic and metabolomic analyses. A total of 332 drought-responsive and 491 rehydration-responsive core genes were robustly differentially expressed in both genotypes. The drought-responsive and rehydration-responsive genes were mainly related to photosynthesis-antenna proteins, nitrogen metabolism, plant-pathogen interactions, and the MAPK signaling pathway. Various transcription factors, including homeobox-leucine zipper protein ATHB-12, NAC transcription factor 29, and heat stress transcription factor A-6b-like, may be vital for tomato responses to water status. Moreover, 24,30-dihydroxy-12(13)-enolupinol, caffeoyl hawthorn acid, adenosine 5'-monophosphate, and guanosine were the key metabolites identified in both genotypes under drought and recovery conditions. The combined transcriptomic and metabolomic analysis highlighted the importance of 38 genes involved in metabolic pathways, the biosynthesis of secondary metabolites, the biosynthesis of amino acids, and ABC transporters for tomato responses to water stress. Our results provide valuable clues regarding the molecular basis of drought tolerance and rehydration. The data presented herein may be relevant for genetically improving tomatoes to enhance drought tolerance.
Collapse
Affiliation(s)
- Jinshuai Shu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| | - Lili Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.Z.); (G.L.)
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.Z.); (G.L.)
| | - Xiaoxuan Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| | - Fuzhong Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| | - Yuhui Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| |
Collapse
|
6
|
Maniatis G, Tani E, Katsileros A, Avramidou EV, Pitsoli T, Sarri E, Gerakari M, Goufa M, Panagoulakou M, Xipolitaki K, Klouvatos K, Megariti S, Pappi P, Papadakis IE, Bebeli PJ, Kapazoglou A. Genetic and Epigenetic Responses of Autochthonous Grapevine Cultivars from the 'Epirus' Region of Greece upon Consecutive Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 13:27. [PMID: 38202337 PMCID: PMC10780352 DOI: 10.3390/plants13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Within the framework of preserving and valorizing the rich grapevine germplasm of the Epirus region of Greece, indigenous grapevine (Vitis vinifera L.) cultivars were characterized and assessed for their resilience to abiotic stresses in the context of climate change. The cultivars 'Debina' and 'Dichali' displayed significant differences in their response to drought stress as judged by morpho-physiological analysis, indicating higher drought tolerance for Dichali. Hence, they were selected for further study aiming to identify genetic and epigenetic mechanisms possibly regulating drought adaptability. Specifically, self-rooted and heterografted on 'Richter 110' rootstock plants were subjected to two phases of drought with a recovery period in between. Gene expression analysis was performed for two stress-related miRNAs and their target genes: (a) miRNA159 and putative targets, VvMYB101, VvGATA-26-like, VvTOPLESS-4-like and (b) miRNA156 and putative target gene VvCONSTANS-5. Overall, grafted plants exhibited a higher drought tolerance than self-rooted plants, suggesting beneficial rootstock-scion interactions. Comparative analysis revealed differential gene expression under repetitive drought stresses between the two cultivars as well as between the self-rooted and grafted plants. 'Dichali' exhibited an up-regulation of most of the genes examined, which may be associated with increased tolerance. Nevertheless, the profound down-regulation of VvTOPLESS-4-like (a transcriptional co-repressor of transcription factors) upon drought and the concomitant up-regulation of miRNA159 highlights the importance of this 'miRNA-target' module in drought responsiveness. DNA methylation profiling using MSAP analysis revealed differential methylation patterns between the two genotypes in response to drought. Further investigations of gene expression and DNA methylation will contribute to our understanding of the epigenetic mechanisms underlying grapevine tolerance to drought stress.
Collapse
Affiliation(s)
- Grigorios Maniatis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Anastasios Katsileros
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Ilisia, 11528 Athens, Greece;
| | - Theodora Pitsoli
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Lykovrysi, 14123 Athens, Greece;
| | - Efi Sarri
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Maria Gerakari
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Maria Goufa
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Maria Panagoulakou
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Konstantina Xipolitaki
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Kimon Klouvatos
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Stamatia Megariti
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Polixeni Pappi
- Laboratory of Plant Virology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA (ELGO-DIMITRA), Kastorias 32A, Mesa Katsampas, 71307 Heraklion, Crete, Greece;
| | - Ioannis E. Papadakis
- Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Penelope J. Bebeli
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (G.M.); (A.K.); (E.S.); (Μ.G.); (M.G.); (M.P.); (K.X.); (K.K.); (S.M.); (P.J.B.)
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Lykovrysi, 14123 Athens, Greece;
| |
Collapse
|