1
|
Song Y, Song Q, Tan F, Wang Y, Li C, Liao S, Yu K, Mei Z, Lv L. Seliciclib alleviates ulcerative colitis by inhibiting ferroptosis and improving intestinal inflammation. Life Sci 2024; 351:122794. [PMID: 38866218 DOI: 10.1016/j.lfs.2024.122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, recurrent, non-specific inflammatory disease, and the pathogenesis of the disease remains unclear. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which are simultaneously closely related to reactive oxygen species (ROS). Although seliciclib is highly effective against immune inflammation, its mechanism on colitis is unclear. This study demonstrated that seliciclib administration partially inhibited ferroptosis, alleviating symptoms and inflammation in experimental colitis. METHODS The mouse UC model was induced by 3.0 % dextran sodium sulfate (DSS) for 7 days and treated with seliciclib (10 mg/kg) for 5 days. In the in vitro model, LPS (100 μg/mL) was used for induction and seliciclib (10 μM) was applied for 2 h. Meanwhile, appropriate histopathology, inflammatory response, oxidative stress, and ferroptosis regulators were measured. RESULTS This study primarily investigated the role of seliciclib in regulating ferroptosis in UC. Bioinformatics analysis indicated that Dual oxidase 2 (DUOX2) may serve a role involved in the ferroptosis of UC. The experimental findings demonstrated that seliciclib alleviates symptoms and inflammation in DSS-induced UC mice and partially mitigates the occurrence of ferroptosis both in vivo and in vitro, possibly through the modulation of DUOX2. CONCLUSIONS Ferroptosis is strongly associated with the development of colitis, and seliciclib plays an essential role in ferroptosis and inflammation in UC. The suppression of ferroptosis in the intestinal epithelium could be a therapeutic approach for UC.
Collapse
Affiliation(s)
- Ya Song
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Qian Song
- The Second College of Clinical Medicine, Chongqing Medical University, 1 Yixue Road, Yuzhong, 400016 Chongqing, China.
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Yanhui Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Keqi Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| |
Collapse
|
2
|
Tanemoto R, Higashiyama M, Tomioka A, Ito S, Mizoguchi A, Nishii S, Inaba K, Wada A, Sugihara N, Hanawa Y, Horiuchi K, Okada Y, Kurihara C, Akita Y, Narimatsu K, Komoto S, Tomita K, Satoh T, Tsuda H, Hokari R. Chronic skin damage induces small intestinal damage via IL-13-induced apoptosis. Clin Exp Immunol 2024; 217:240-252. [PMID: 38916413 PMCID: PMC11310704 DOI: 10.1093/cei/uxae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024] Open
Abstract
The gut-skin axis has recently been widely recognized, and both the gut and skin have been found to affect each other through a bidirectional connection; however, the precise mechanisms remain to be elucidated. Therefore, we aimed to investigate the effects of chronic skin damage (CSD) on mouse intestines. Following the CSD model, 4% sodium dodecyl sulfate was applied to the back-shaved murine skin six times for 2 weeks after tape stripping. The small and large intestines were analyzed histologically and immunologically, respectively. Intestinal permeability was measured using fluorescein isothiocyanate-conjugated-dextran. The role of interleukin-13 (IL-13) in the ileum was investigated using an anti-IL-13 antibody. Apoptotic intestinal cells were analyzed using TUNEL staining. Villus atrophy was observed in the small intestine in the CSD model, along with increased permeability. Mast cells, but not T cells, eosinophils, or innate lymph cell-2, were increased in the intestinal mucosa. However, no significant changes were observed in the large intestine. mRNA expression of IL-13 was increased only in the ileum of the CSD model. Apoptotic intestinal epithelial cells were significantly increased in the ileum of the CSD model. Administration of an anti-IL-13 antibody ameliorated the intestinal damage caused by CSD, along with decreased apoptotic cells and mast cell infiltration. Skin damage causes morphological changes in the small intestine, accompanied by increased intestinal permeability, possibly through the IL-13-induced apoptosis of mast cells in the epithelium. Surfactant-mediated mechanical skin damage can cause a leaky gut.
Collapse
Affiliation(s)
- Rina Tanemoto
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Masaaki Higashiyama
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Akira Tomioka
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Suguru Ito
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Akinori Mizoguchi
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Shin Nishii
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Kenichi Inaba
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Akinori Wada
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Nao Sugihara
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Yoshinori Hanawa
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Kazuki Horiuchi
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Yoshikiyo Okada
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Chie Kurihara
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Yoshihiro Akita
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Kazuyuki Narimatsu
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Shunsuke Komoto
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Kengo Tomita
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| | - Takahiro Satoh
- Department of Dermatology, National Defense Medical College, Saitama, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Ryota Hokari
- Department of Gastroenterology, National Defense Medical College, Saitama, Japan
| |
Collapse
|
3
|
Lippi BK, Fernandes GAB, Azevedo GA, Negreiros NGS, Soares AW, Landgraf MA, Fernandes JPS, Landgraf RG. The histamine H 4 receptor antagonist 1-[(5-chloro-2,3-dihydro-1-benzofuran-2-yl)methyl]-4-methyl-piperazine(LINS01007) prevents the development of DSS-induced colitis in mice. Int Immunopharmacol 2024; 133:112128. [PMID: 38652966 DOI: 10.1016/j.intimp.2024.112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with growing incidence worldwide. Our group reported the compound 5-choro-1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine (LINS01007) as H4R antagonist (pKi 6.2) and therefore the effects and pharmacological efficacy on a DSS-induced mice model of UC were assessed in this work. Experimental acute colitis was induced in male BALB/c mice (n = 5-10) by administering 3 % DSS in the drinking water for six days. The test compound LINS01007 was administered daily i.p. (5 mg/kg) and compared to control group without treatment. Body weight, water and food consumption, and the presence of fecal blood were monitored during 7-day treatment period. The levels of inflammatory markers (PGE2, COX-2, IL-6, NF-κB and STAT3) were also analyzed. Animals subjected to the acute colitis protocol showed a reduction in water and food intake from the fourth day (p < 0.05) and these events were prevented by LINS01007. Histological signs of edema, hyperplasia and disorganized intestinal crypts, as well as neutrophilic infiltrations, were found in control mice while these findings were significantly reduced in animals treated with LINS01007. Significant reductions in the levels of PGE2, COX-2, IL-6, NF-κB and STAT3 were observed in the serum and tissue of treated animals. The results demonstrated the significant effects of LINS01007 against DSS-induced colitis, highlighting the potential of H4R antagonism as promising treatment for this condition.
Collapse
Affiliation(s)
- Beatriz K Lippi
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Gustavo A B Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Gabriela A Azevedo
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil; Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Nathani G S Negreiros
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil
| | - Antonio W Soares
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil; Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil.
| | - Richardt G Landgraf
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo-campus Diadema, Diadema, SP, Brazil.
| |
Collapse
|
4
|
Ma X, Xu S, Pan Y, Jiang C, Wang Z. Construction of SERS output-signal aptasensor using MOF/noble metal nanoparticles based nanozyme for sensitive histamine detection. Food Chem 2024; 440:138227. [PMID: 38142555 DOI: 10.1016/j.foodchem.2023.138227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Herein, a signal output SERS aptasensor for Histamine (HA) detection is designed. MIL-100(Fe) was loaded with gold nanoparticles (AuNPs) to form composite nanozyme MIL-100(Fe)@AuNPs, which was used in the reaction system TMB/H2O2. Silver nanoparticles (AgNPs) were synthesized as "amplifier" for the SERS signal of ox TMB. After nucleic acid functionalization, the two parts were assembled to form the multifunctional substrate with both high catalytic and SERS efficiency. In the detection system, the specific binding effect of HA aptamer toward HA induced a decrease in the assembly of AgNPs on MIL-100(Fe)@AuNPs which caused a decrease in ox TMB SERS signals. The linear relation of HA ranged from 10-11 M to 5 × 10-3 M with LOD as low as 3.9 × 10-12 M. Recovery ratio in fermented soybean products (94.42-105.75 %) proved the real sample applicability. The fabricated SERS aptasensor will provide technical support for the safety during food processing and storage.
Collapse
Affiliation(s)
- Xiaoyuan Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Shan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yue Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Caiyun Jiang
- Department of Health, Jiangsu Engineering and Research Center of Food Safety, Jiangsu Vocational Institute of Commerce, Nanjing 211168, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Zhang M, Liu H, Xu L, Zhang X, Chen W, Wang C. Therapeutic Potential of Fucoidan in Alleviating Histamine-Induced Liver Injury: Insights from Mice Studies. Foods 2024; 13:1523. [PMID: 38790823 PMCID: PMC11120395 DOI: 10.3390/foods13101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Histamine, a bioactive component in certain foods such as Huangjiu has been associated with liver injury and disrupted intestinal balance. This study explored the potential therapeutic effects of fucoidan (FCD) in mitigating histamine-induced imbalances in mice. We found that FCD mitigated liver injury, reducing transaminases, oxidative stress, and inflammation. Histological improvements included decreased cell infiltration and necrosis. FCD restored tight junction proteins and suppressed inflammation-related genes. Western blot analysis revealed FCD's impact on TGF-β1, p-AKT, AKT, CYP2E1, Grp78, NLRP3, Cas-1, and GSDMD. Gut LPS levels decreased with FCD. Gut microbiota analysis showed FCD's modulation effect, reducing Firmicutes and increasing Bacteroides. FCD demonstrates potential in alleviating histamine-induced liver injury, regulating inflammation, and influencing gut microbiota. Further research exploring higher dosages and additional parameters is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (M.Z.); (H.L.); (L.X.); (X.Z.); (W.C.)
| |
Collapse
|
6
|
Fu Z, Yang X, Jiang Y, Mao X, Liu H, Yang Y, Chen J, Chen Z, Li H, Zhang XS, Mao X, Li N, Wang D, Jiang J. Microbiota profiling reveals alteration of gut microbial neurotransmitters in a mouse model of autism-associated 16p11.2 microduplication. Front Microbiol 2024; 15:1331130. [PMID: 38596370 PMCID: PMC11002229 DOI: 10.3389/fmicb.2024.1331130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
The gut-brain axis is evident in modulating neuropsychiatric diseases including autism spectrum disorder (ASD). Chromosomal 16p11.2 microduplication 16p11.2dp/+ is among the most prevalent genetic copy number variations (CNV) linked with ASD. However, the implications of gut microbiota status underlying the development of ASD-like impairments induced by 16p11.2dp/+ remains unclear. To address this, we initially investigated a mouse model of 16p11.2dp/+, which exhibits social novelty deficit and repetitive behavior characteristic of ASD. Subsequently, we conducted a comparative analysis of the gut microbial community and metabolomic profiles between 16p11.2dp/+ and their wild-type counterparts using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC/MS). Our microbiota analysis revealed structural dysbiosis in 16p11.2dp/+ mice, characterized by reduced biodiversity and alterations in species abundance, as indicated by α/β-diversity analysis. Specifically, we observed reduced relative abundances of Faecalibaculum and Romboutsia, accompanied by an increase in Turicibacter and Prevotellaceae UCG_001 in 16p11.2dp/+ group. Metabolomic analysis identified 19 significantly altered metabolites and unveiled enriched amino acid metabolism pathways. Notably, a disruption in the predominantly histamine-centered neurotransmitter network was observed in 16p11.2dp/+ mice. Collectively, our findings delineate potential alterations and correlations among the gut microbiota and microbial neurotransmitters in 16p11.2dp/+ mice, providing new insights into the pathogenesis of and treatment for 16p11.2 CNV-associated ASD.
Collapse
Affiliation(s)
- Zhang Fu
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiuyan Yang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Youheng Jiang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xinliang Mao
- Guangdong Perfect Life Health Science and Technology Research Institute Co., Ltd., Zhongshan, Guangdong, China
| | - Hualin Liu
- Guangdong Perfect Life Health Science and Technology Research Institute Co., Ltd., Zhongshan, Guangdong, China
| | - Yanming Yang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jia Chen
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhumei Chen
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, Guangdong, China
| | - Huiliang Li
- Division of Medicine, Wolfson Institute for Biomedical Research, Faculty of Medical Sciences, University College London, London, United Kingdom
- China-UK Institute for Frontier Science, Shenzhen, Guangdong, China
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Xinjun Mao
- Department of Anesthesiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ningning Li
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- China-UK Institute for Frontier Science, Shenzhen, Guangdong, China
| | - Dilong Wang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Jiang
- Tomas Lindhal Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Shakibfar S, Allin KH, Jess T, Barbieri MA, Battini V, Simoncic E, Kirchgesner J, Ulven T, Sessa M. Drug Repurposing in Crohn's Disease Using Danish Real-World Data. Pragmat Obs Res 2024; 15:17-29. [PMID: 38404739 PMCID: PMC10894518 DOI: 10.2147/por.s444569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Aim Drug repurposing, utilizing electronic healthcare records (EHRs), offers a promising alternative by repurposing existing drugs for new therapeutic indications, especially for patients lacking effective therapies. Intestinal fibrosis, a severe complication of Crohn's disease (CD), poses significant challenges, increasing morbidity and mortality without available pharmacological treatments. This article focuses on identifying medications associated with an elevated or reduced risk of fibrosis in CD patients through a population-wide real-world data and artificial intelligence (AI) approach. Methods Patients aged 65 or older with a diagnosis of CD from 1996 to 2019 in the Danish EHRs were followed for up to 24 years. The primary outcome was the need of specific surgical procedures, namely proctocolectomy with ileostomy and ileocecal resection as proxies of intestinal fibrosis. The study explored drugs linked to an increased or reduced risk of the study outcome through machine-learning driven survival analysis. Results Among the 9179 CD patients, 1029 (11.2%) underwent surgery, primarily men (58.5%), with a mean age of 76 years, 10 drugs were linked to an elevated risk of surgery for proctocolectomy with ileostomy and ileocecal resection. In contrast, 10 drugs were associated with a reduced risk of undergoing surgery for these conditions. Conclusion This study focuses on repurposing existing drugs to prevent surgery related to intestinal fibrosis in CD patients, using Danish EHRs and advanced statistical methods. The findings offer valuable insights into potential treatments for this condition, addressing a critical unmet medical need. Further research and clinical trials are warranted to validate the effectiveness of these repurposed drugs in preventing surgery related to intestinal fibrosis in CD patients.
Collapse
Affiliation(s)
- Saeed Shakibfar
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Maria Antonietta Barbieri
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vera Battini
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università Degli Studi Di Milano, Milan, Italy
| | - Eva Simoncic
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Julien Kirchgesner
- Department of Gastroenterology, INSERM, Institut Pierre Louis d’Epidémiologie Et de Santé Publique, AP-HP, Hôpital Saint-Antoine, Sorbonne Université, Paris, France
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Lauricella M, Di Liberto D. Special Issue: "Inflammatory Signaling Pathways Involved in Gastrointestinal Diseases". Int J Mol Sci 2024; 25:1287. [PMID: 38279287 PMCID: PMC10816278 DOI: 10.3390/ijms25021287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammation is a defensive response of the innate and adaptive immune systems against injury and/or harmful microorganisms to restore homeostasis [...].
Collapse
Affiliation(s)
- Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
9
|
Jiménez-Cortegana C, Palomares F, Alba G, Santa-María C, de la Cruz-Merino L, Sánchez-Margalet V, López-Enríquez S. Dendritic cells: the yin and yang in disease progression. Front Immunol 2024; 14:1321051. [PMID: 38239364 PMCID: PMC10794555 DOI: 10.3389/fimmu.2023.1321051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Dendritic cells (DCs) are antigen presenting cells that link innate and adaptive immunity. DCs have been historically considered as the most effective and potent cell population to capture, process and present antigens to activate naïve T cells and originate favorable immune responses in many diseases, such as cancer. However, in the last decades, it has been observed that DCs not only promote beneficial responses, but also drive the initiation and progression of some pathologies, including inflammatory bowel disease (IBD). In line with those notions, different therapeutic approaches have been tested to enhance or impair the concentration and role of the different DC subsets. The blockade of inhibitory pathways to promote DCs or DC-based vaccines have been successfully assessed in cancer, whereas the targeting of DCs to inhibit their functionality has proved to be favorable in IBD. In this review, we (a) described the general role of DCs, (b) explained the DC subsets and their role in immunogenicity, (c) analyzed the role of DCs in cancer and therapeutic approaches to promote immunogenic DCs and (d) analyzed the role of DCs in IBD and therapeutic approaches to reduced DC-induced inflammation. Therefore, we aimed to highlight the "yin-yang" role of DCs to improve the understand of this type of cells in disease progression.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Gonzalo Alba
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Consuelo Santa-María
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Clinical Oncology Dept. Medicine Department, University of Seville, Virgen Macarena University Hospital, Seville, Spain
| | - Victor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
10
|
Asaad GF, Mostafa RE. Amelioration of acetic acid-induced ulcerative colitis in rats by cetirizine and loratadine via regulation of the PI3K/Akt/Nrf2 signalling pathway and pro-inflammatory cytokine release. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:761-767. [PMID: 38645494 PMCID: PMC11024406 DOI: 10.22038/ijbms.2024.75889.16426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Objectives Ulcerative colitis is a chronic inflammatory bowel disease (IBD) that causes inflammation and ulcers in the rectum and the innermost layer of the large intestine. Our study aimed to elucidate the ameliorative effect of cetirizine (CTZ) and loratadine (LOR) against acetic acid-induced ulcerative colitis in rats via assessment of the PI3K/p-Akt/Nrf2 signaling pathway and proinflammatory cytokine release. Materials and Methods Thirty-two rats were allocated into four groups (n=8). Group (I) was considered normal control. Acetic acid (AA) was injected intrarectally in groups (2-4). Group (2) was kept untreated. Group (3) was administered CTZ (20 mg/kg/day) for 7 days. Group (4) was administered LOR (10 mg/kg/day) for 7 days. Results AA showed severe macroscopic colonic lesions associated with increased ulcer number, area, and severity with significantly elevated PI3K, p-Akt, Nrf2, TNF-α, and IL-6 in colorectal tissue as compared to the normal control group. All the aforementioned indicators were greatly improved by CTZ and LOR therapy. Conclusion This is the first study to elucidate the ameliorative effect of CTZ and LOR against AA-induced UC in rats. CTZ and LOR treatment mitigates UC via amelioration of the PI3K/p-Akt/Nrf2 pathway and proinflammatory cytokine release.
Collapse
Affiliation(s)
- Gihan F. Asaad
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Rasha E. Mostafa
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
11
|
Lu C, Xue L, Luo K, Liu Y, Lai J, Yao X, Xue Y, Huo W, Meng C, Xia D, Gao X, Yuan Q, Cao K. Colon-Accumulated Gold Nanoclusters Alleviate Intestinal Inflammation and Prevent Secondary Colorectal Carcinogenesis via Nrf2-Dependent Macrophage Reprogramming. ACS NANO 2023; 17:18421-18432. [PMID: 37690027 DOI: 10.1021/acsnano.3c06025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inflammatory bowel disease (IBD) is one of the main factors leading to colitis-associated colorectal cancer (CAC). Therefore, it is critical to develop an effective treatment for IBD to prevent secondary colorectal carcinogenesis. M2 macrophages play crucial roles in the resolution phase of intestinal inflammation. However, traditional drugs rarely target intestinal M2 macrophages, and they are not easily cleared. Gold nanoclusters are known for their in vivo safety and intrinsic biomedical activities. In this study, a glutathione-protected gold nanocluster is synthesized and evaluated, namely, GA. Interestingly, GA specifically accumulates in the colon during IBD. Furthermore, GA not only promotes M2 differentiation of IL-4-treated peritoneal macrophages but also reprograms macrophage polarization from M1 to M2 in a pro-inflammatory environment. Mechanistically, this regulatory effect is exerted through activating the antioxidant Nrf2 signaling pathway, but not traditional STAT6. When applied in IBD mice, we found that GA elevates M2 macrophages and alleviates IBD in an Nrf2-dependent manner, evidenced by the abolished therapeutic effect upon Nrf2 inhibitor treatment. Most importantly, GA administration significantly suppresses AOM/DSS-induced CAC, without causing obvious tissue damage, providing critical evidence for the potential application of gold nanoclusters as nanomedicine for the treatment of IBD and CAC.
Collapse
Affiliation(s)
- Cao Lu
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Liyuan Xue
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kaidi Luo
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yu Liu
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Jing Lai
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xiuxiu Yao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yilin Xue
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Wendi Huo
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Cong Meng
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Dongfang Xia
- College of Chemistry and Material Science, Shandong Agricultural University, Shandong, Taian 271018, China
| | - Xueyun Gao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Peng Y, Ma Y, Luo Z, Jiang Y, Xu Z, Yu R. Lactobacillus reuteri in digestive system diseases: focus on clinical trials and mechanisms. Front Cell Infect Microbiol 2023; 13:1254198. [PMID: 37662007 PMCID: PMC10471993 DOI: 10.3389/fcimb.2023.1254198] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Objectives Digestive system diseases have evolved into a growing global burden without sufficient therapeutic measures. Lactobacillus reuteri (L. reuteri) is considered as a new potential economical therapy for its probiotic effects in the gastrointestinal system. We have provided an overview of the researches supporting various L. reuteri strains' application in treating common digestive system diseases, including infantile colic, diarrhea, constipation, functional abdominal pain, Helicobacter pylori infection, inflammatory bowel disease, diverticulitis, colorectal cancer and liver diseases. Methods The summarized literature in this review was derived from databases including PubMed, Web of Science, and Google Scholar. Results The therapeutic effects of L. reuteri in digestive system diseases may depend on various direct and indirect mechanisms, including metabolite production as well as modulation of the intestinal microbiome, preservation of the gut barrier function, and regulation of the host immune system. These actions are largely strain-specific and depend on the activation or inhibition of various certain signal pathways. It is well evidenced that L. reuteri can be effective both as a prophylactic measure and as a preferred therapy for infantile colic, and it can also be recommended as an adjuvant strategy to diarrhea, constipation, Helicobacter pylori infection in therapeutic settings. While preclinical studies have shown the probiotic potential of L. reuteri in the management of functional abdominal pain, inflammatory bowel disease, diverticulitis, colorectal cancer and liver diseases, its application in these disease settings still needs further study. Conclusion This review focuses on the probiotic effects of L. reuteri on gut homeostasis via certain signaling pathways, and emphasizes the importance of these probiotics as a prospective treatment against several digestive system diseases.
Collapse
Affiliation(s)
- Yijing Peng
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Wuxi Children’s Hospital, Children’s Hospital of Jiangnan University, Wuxi, China
| | - Yizhe Ma
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Department of Pediatric, Jiangyin People’s Hospital of Nantong University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yifan Jiang
- School of Medicine, Nantong University, Nantong, China
| | - Zhimin Xu
- College of Resources and Environment, Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|