1
|
Xu B, Huang Y, Yu D, Chen Y. Advancements of ROS-based biomaterials for sensorineural hearing loss therapy. Biomaterials 2025; 316:123026. [PMID: 39705924 DOI: 10.1016/j.biomaterials.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress. This comprehensive review systematically explores the mechanisms of ROS-mediated oxidative stress in SNHL, emphasizing etiological factors such as aging, acoustic trauma, and ototoxic medication exposure. Furthermore, it examines the therapeutic potential of ROS-scavenging biomaterials, positioning them as promising nanomedicines for targeted antioxidant intervention. By critically assessing recent advances in biomaterial design and functionality, this review thoroughly evaluates their translational potential for clinical applications. It also addresses the challenges and limitations of ROS-neutralizing strategies, while highlighting the transformative potential of these biomaterials in developing novel SNHL treatment modalities. This review advocates for continued research and development to integrate ROS-scavenging biomaterials into future clinical practice, aiming to address the unmet needs in SNHL management and potentially revolutionize the treatment landscape for this pervasive health issue.
Collapse
Affiliation(s)
- Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Institute of Materdicine, Shanghai, 200012, China.
| |
Collapse
|
2
|
Varlamova EG. Roles of selenium-containing glutathione peroxidases and thioredoxin reductases in the regulation of processes associated with glioblastoma progression. Arch Biochem Biophys 2025; 766:110344. [PMID: 39956249 DOI: 10.1016/j.abb.2025.110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Glioblastoma remains the most common and aggressive primary tumor of the central nervous system in adults. Current treatment options include standard surgical resection combined with radiation/chemotherapy, but such protocol most likely only delays the inevitable. Therefore, the problem of finding therapeutic targets to prevent the occurrence and development of this severe oncological disease is currently acute. It is known that the functions of selenoproteins in the regulation of carcinogenesis processes are not unambiguous. Either they exhibit cytotoxic activity on cancer cells, or cytoprotective. A special place in the progression of oncological diseases of various etiologies is occupied by proteins of the thioredoxin and glutathione systems. These are two cellular antioxidant systems that regulate redox homeostasis, counteracting the increased production of reactive oxygen species in cells. The review reflects the latest data on the role of key enzymes of these redox systems in the regulation of processes associated with the progression of glioblastoma. A thorough consideration of these issues will expand fundamental knowledge about the functions of selenium-containing thioredoxin reductases and glutathione peroxidases in the therapy of glioblastomas and provide an understanding of the prospects for the treatment of this aggressive oncological disease.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", St. Institutskaya 3, Pushchino, 142290, Russia.
| |
Collapse
|
3
|
Varlamova EG. Selenium-containing compounds, selenium nanoparticles and selenoproteins in the prevention and treatment of lung cancer. J Trace Elem Med Biol 2025; 88:127620. [PMID: 39970692 DOI: 10.1016/j.jtemb.2025.127620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
THE OBJECTIVE Is to review the latest data on the role of key organic and inorganic compounds of the essential trace element selenium, selenium-containing nanocomposites and nanoparticles, and selenoproteins in lung cancer therapy. OBJECT OF RESEARCH Sodium selenite, methylselenic acid, selenomethionine, selenium nanoparticles, mammalian selenoproteins KEY OBJECTIVES:: To describe the molecular mechanisms of the cytotoxic effect of sodium selenite, methylselenic acid and selenomethionine on lung cancer cells, to discuss the latest advances in lung cancer nanomedicine using selenium-based nanoparticles and nanocomposites and to assess the prospects for creating antitumor drugs based on them, to assess the role of selenoproteins in the progression or inhibition of lung cancer and to study the molecular mechanisms of such regulation CONCLUSIONS:: This review provides a complete picture of the role of selenium and selenium-containing agents of various natures in the regulation of carcinogenesis and therapy of lung cancer, which significantly complements the fundamental data on the functions of these compounds, on the molecular mechanisms of regulation of processes associated with lung cancer. This knowledge provides insight into the latest developments and future prospects in the treatment and prevention of lung cancer with the active participation of the trace element selenium.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", st. Institutskaya 3, Pushchino, 142290, Russia.
| |
Collapse
|
4
|
Gao J, Jiang S, Li Z, Liu S, Gu Q, Yu X. Screening, characterization, and potential anti-hangover ability of selenium nanoparticle-enriched lactobacillus. Int Microbiol 2025:10.1007/s10123-025-00653-8. [PMID: 40153189 DOI: 10.1007/s10123-025-00653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/26/2025] [Accepted: 03/21/2025] [Indexed: 03/30/2025]
Abstract
This study aimed to develop a selenium nanoparticles (SeNPs)-enriched probiotic strain with potential anti-hangover effects. Pediococcus acidilactici JW-015 was screened for its high tolerance to inorganic selenium (up to 80 mM sodium selenite) and efficient synthesis of SeNPs, achieving a selenium accumulation concentration of 6974 ± 90.71 μg/g, with SeNPs accounting for 86.54% ± 2.48%. Safety and probiotic properties were evaluated, confirming that JW-015 is a safe probiotic strain and that selenium enrichment enhanced its probiotic properties. Furthermore, JW-015 demonstrated significant anti-hangover efficacy, with selenium enrichment improving the oxidative stress capacity, alcohol tolerance, alcohol degradation ability, and relevant enzyme activities (ADH and ALDH) of the strain. This study provides a promising bio-carrier for SeNPs transformation and expands the applications of selenium-enriched LAB.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Zehao Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Shoufeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
5
|
Mrwad AA, El-Shafey SE, Said NM. Chitosan-encapsulated selenium nanoparticles alleviate CCl 4 induced hepatotoxicity through synergistically modulating NF-κB and Nrf2 signaling pathways and regulating Bcl-2 and Caspase-3 expression: A comprehensive study with multiple regression analysis. J Trace Elem Med Biol 2024; 86:127563. [PMID: 39547053 DOI: 10.1016/j.jtemb.2024.127563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND The delivery of selenium in a nano-form (Se-NPs) is a promising modality of treatment for various oxidative stress-induced diseases. OBJECTIVE This study aims to investigate the conceivable effects of selenium nanoparticles either alone (Se-NPs) or encapsulated with chitosan (Se-CS-NPs) on toxicity induced by CCl4 in rats. METHODS Eighty albino rats were divided equally into eight groups. The first group was the placebo. The second group was a positive control, while the third and the fourth groups got orally (Se-NPs 5 mg/Kg) and (Se-CS-NPs 225 mg/Kg) respectively. The fifth and sixth groups were protective groups in which Se-NPs or Se-CS-NPs were given simultaneously. The seventh and eighth groups were therapeutic as they received either Se-NPs or Se-CS-NPs after stopping the CCl4 injection for 4 weeks more. RESULTS Our results showed that the protective and therapeutic groups showed an increase in caspase-3 gene expression with a decline in the expression of Bcl-2, Nrf2, and AFP genes. Histopathological and immunohistochemical investigations showed the role of selenium nanoparticles either alone or coated with chitosan in decreasing fibrotic marker collagen I positive reaction CONCLUSION: Selenium nanoparticles showed an excellent effect in counteracting the toxic effect of carbon tetrachloride on liver functions, inflammation reactions, and apoptosis process. Moreover, using selenium nanoparticles has a strong role in preserving the liver architecture with its normal constituents. No additional benefit was observed when the selenium nanoparticles were encapsulated with chitosan.
Collapse
Affiliation(s)
| | - Shaymaa E El-Shafey
- Physical Chemistry Department, Surface and Catalysis Lab., National Research Center, El-Bohouth St. 33, Dokki, Giza, Egypt
| | - Noha Mohamed Said
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
6
|
Xiao Z, Zhou J, Chen H, Chen X, Wang L, Liu D, Kang X. Synthesis, characterization and MAFLD prevention potential of Ganoderma lucidum spore polysaccharide-stabilized selenium nanoparticles. Int J Biol Macromol 2024; 282:136962. [PMID: 39490485 DOI: 10.1016/j.ijbiomac.2024.136962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The unstability of selenium nanoparticles (SeNPs) results in decreased activity which limits its therapeutic potential. In this study, we utilized Ganoderma lucidum spore polysaccharide (GLP, Mw = 983.96 kDa) as a novel stabilizer to synthesize GLP-SeNPs. GLP-SeNPs (Se/GLP = 1/3) with an average diameter of 149 nm were successfully prepared and it was stable for at least 30 days at 4 °C. It exhibited an orange-red color, zero valence state, amorphous structure, selenium uniform distribution, a zeta potential of -29.73 mV, selenium content of 16.04 %. GLP-SeNPs pretreatment decreased lipid accumulation, reduced ROS content and enhanced SOD and CAT activity in HepG2 cells. Fe2+ and MDA contents were decreased, while GPX4 and GSH activities were increased. All these ameliorated effects could be abolished by NRF2 antagonist ML385. The expression of anti-oxidant genes and iron exporter was up-regulated, while that of pro-oxidant and lipid biosynthesis gene was down-regulated. The GPX4 activity could be reduced by ML385 addition. In conclusion, GLP-SeNPs was successfully constructed at the ratio of 1/3 (Se/GLP). It prevents MAFLD by targeting ferroptosis, including lowering iron overload, inhibiting lipid accumulation and attenuating oxidative stress. The improvement was conducted via activating SLC40A1-mediated iron pathway, ACSL4-mediated lipid metabolism and NRF2-mediated GSH-GPX4 pathway. Therefore, GLP-SeNPs can be used as potential selenium nutritional supplements or adjuvants for MAFLD prevention.
Collapse
Affiliation(s)
- Zhengpeng Xiao
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China
| | - Jiali Zhou
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China
| | - Hanqi Chen
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China
| | - Xuan Chen
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China; Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha, Hunan, PR China; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, PR China
| | - Lei Wang
- State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China; Changsha Nengfeng Biotechnology Co., Ltd, Changsha, Hunan, PR China
| | - Dongbo Liu
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China; Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha, Hunan, PR China; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, PR China.
| | - Xincong Kang
- Horticulture College, Hunan Agricultural University, Changsha, Hunan, PR China; State Key Laboratory of Subhealth Intervention Technology, Changsha, Hunan, PR China; Hunan Provincial Engineering Research Center of Medical Nutrition Intervention Technology for Metabolic Diseases, Hunan Agricultural University, Changsha, Hunan, PR China; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, Hunan, PR China.
| |
Collapse
|
7
|
Cristani M, Citarella A, Carnamucio F, Micale N. Nano-Formulations of Natural Antioxidants for the Treatment of Liver Cancer. Biomolecules 2024; 14:1031. [PMID: 39199418 PMCID: PMC11352298 DOI: 10.3390/biom14081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress is a key factor in the pathological processes that trigger various chronic liver diseases, and significantly contributes to the development of hepatocarcinogenesis. Natural antioxidants reduce oxidative stress by neutralizing free radicals and play a crucial role in the treatment of free-radical-induced liver diseases. However, their efficacy is often limited by poor bioavailability and metabolic stability. To address these limitations, recent advances have focused on developing nano-drug delivery systems that protect them from degradation and enhance their therapeutic potential. Among the several critical benefits, they showed to be able to improve bioavailability and targeted delivery, thereby reducing off-target effects by specifically directing the antioxidant to the liver tumor site. Moreover, these nanosystems led to sustained release, prolonging the therapeutic effect over time. Some of them also exhibited synergistic effects when combined with other therapeutic agents, allowing for improved overall efficacy. This review aims to discuss recent scientific advances in nano-formulations containing natural antioxidant molecules, highlighting their potential as promising therapeutic approaches for the treatment of liver cancer. The novelty of this review lies in its comprehensive focus on the latest developments in nano-formulations of natural antioxidants for the treatment of liver cancer.
Collapse
Affiliation(s)
- Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy;
| | - Federica Carnamucio
- Center of Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| |
Collapse
|
8
|
Varlamova EG, Goltyaev MV, Rogachev VV, Gudkov SV, Karaduleva EV, Turovsky EA. Antifibrotic Effect of Selenium-Containing Nanoparticles on a Model of TAA-Induced Liver Fibrosis. Cells 2023; 12:2723. [PMID: 38067151 PMCID: PMC10706216 DOI: 10.3390/cells12232723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
For the first time, based on the expression analysis of a wide range of pro- and anti-fibrotic, pro- and anti-inflammatory, and pro- and anti-apoptotic genes, key markers of endoplasmic reticulum stress (ER-stress), molecular mechanisms for the regulation of fibrosis, and accompanying negative processes caused by thioacetamide (TAA) injections and subsequent injections of selenium-containing nanoparticles and sorafenib have been proposed. We found that selenium nanoparticles of two types (doped with and without sorafenib) led to a significant decrease in almost all pro-fibrotic and pro-inflammatory genes. Sorafenib injections also reduced mRNA expression of pro-fibrotic and pro-inflammatory genes but less effectively than both types of nanoparticles. In addition, it was shown for the first time that TAA can be an inducer of ER-stress, most likely activating the IRE1α and PERK signaling pathways of the UPR, an inducer of apoptosis and pyroptosis. Sorafenib, despite a pronounced anti-apoptotic effect, still did not reduce the expression of caspase-3 and 12 or mitogen-activated kinase JNK1 to control values, which increases the risk of persistent apoptosis in liver cells. After injections of selenium-containing nanoparticles, the negative effects caused by TAA were leveled, causing an adaptive UPR signaling response through activation of the PERK signaling pathway. The advantages of selenium-containing nanoparticles over sorafenib, established in this work, once again emphasize the unique properties of this microelement and serve as an important factor for the further introduction of drugs based on it into clinical practice.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| | - Michail Victorovich Goltyaev
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| | - Vladimir Vladimirovich Rogachev
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute, the Russian Academy of Sciences, 119991 Moscow, Russia;
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Elena V. Karaduleva
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics, the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (M.V.G.); (V.V.R.); (E.V.K.); (E.A.T.)
| |
Collapse
|
9
|
Lin PC, Hsu WY, Lee PY, Hsu SH, Chiou SS. Insights into Hepatocellular Carcinoma in Patients with Thalassemia: From Pathophysiology to Novel Therapies. Int J Mol Sci 2023; 24:12654. [PMID: 37628834 PMCID: PMC10454908 DOI: 10.3390/ijms241612654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Thalassemia is a heterogeneous congenital hemoglobinopathy common in the Mediterranean region, Middle East, Indian subcontinent, and Southeast Asia with increasing incidence in Northern Europe and North America due to immigration. Iron overloading is one of the major long-term complications in patients with thalassemia and can lead to organ damage and carcinogenesis. Hepatocellular carcinoma (HCC) is one of the most common malignancies in both transfusion-dependent thalassemia (TDT) and non-transfusion-dependent thalassemia (NTDT). The incidence of HCC in patients with thalassemia has increased over time, as better chelation therapy confers a sufficiently long lifespan for the development of HCC. The mechanisms of iron-overloading-associated HCC development include the increased reactive oxygen species (ROS), inflammation cytokines, dysregulated hepcidin, and ferroportin metabolism. The treatment of HCC in patients with thalassemia was basically similar to those in general population. However, due to the younger age of HCC onset in thalassemia, regular surveillance for HCC development is mandatory in TDT and NTDT. Other supplemental therapies and experiences of novel treatments for HCC in the thalassemia population were also reviewed in this article.
Collapse
Affiliation(s)
- Pei-Chin Lin
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Wan-Yi Hsu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
| | - Po-Yi Lee
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Division of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| |
Collapse
|
10
|
Serov DA, Khabatova VV, Vodeneev V, Li R, Gudkov SV. A Review of the Antibacterial, Fungicidal and Antiviral Properties of Selenium Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5363. [PMID: 37570068 PMCID: PMC10420033 DOI: 10.3390/ma16155363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The resistance of microorganisms to antimicrobial drugs is an important problem worldwide. To solve this problem, active searches for antimicrobial components, approaches and therapies are being carried out. Selenium nanoparticles have high potential for antimicrobial activity. The relevance of their application is indisputable, which can be noted due to the significant increase in publications on the topic over the past decade. This review of research publications aims to provide the reader with up-to-date information on the antimicrobial properties of selenium nanoparticles, including susceptible microorganisms, the mechanisms of action of nanoparticles on bacteria and the effect of nanoparticle properties on their antimicrobial activity. This review describes the most complete information on the antiviral, antibacterial and antifungal effects of selenium nanoparticles.
Collapse
Affiliation(s)
- Dmitry A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Venera V. Khabatova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Vladimir Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| |
Collapse
|