1
|
Marino Y, Inferrera F, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Role of mitochondrial dysfunction and biogenesis in fibromyalgia syndrome: Molecular mechanism in central nervous system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167301. [PMID: 38878832 DOI: 10.1016/j.bbadis.2024.167301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 08/18/2024]
Abstract
A critical role for mitochondrial dysfunction has been shown in the pathogenesis of fibromyalgia. It is a chronic pain syndrome characterized by neuroinflammation and impaired oxidative balance in the central nervous system. Boswellia serrata (BS), a natural polyphenol, is a well-known able to influence the mitochondrial metabolism. The objective of this study was to evaluate the mitochondrial dysfunction and biogenesis in fibromyalgia and their modulation by BS. To induce the model reserpine (1 mg/Kg) was subcutaneously administered for three consecutive days and BS (100 mg/Kg) was given orally for twenty-one days. BS reduced pain like behaviors in reserpine-injected rats and the astrocytes activation in the dorsal horn of the spinal cord and prefrontal cortex that are recognized as key regions associated with the neuropathic pain. Vulnerability to neuroinflammation and impaired neuronal plasticity have been described as consequences of mitochondrial dysfunction. BS administration increased PGC-1α expression in the nucleus of spinal cord and brain tissues, promoting the expression of regulatory genes for mitochondrial biogenesis (NRF-1, Tfam and UCP2) and cellular antioxidant defence mechanisms (catalase, SOD2 and Prdx 3). According with these data BS reduced lipid peroxidation and the GSSG/GSH ratio and increased SOD activity in the same tissues. Our results also showed that BS administration mitigates cytochrome-c leakage by promoting mitochondrial function and supported the movement of PGC-1α protein into the nucleus restoring the quality control of mitochondria. Additionally, BS reduced Drp1 and Fis1, preventing both mitochondrial fission and cell death, and increased the expression of Mfn2 protein, facilitating mitochondrial fusion. Overall, our results showed important mitochondrial dysfunction in central nervous system in fibromyalgia syndrome and the role of BS in restoring mitochondrial dynamics.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| |
Collapse
|
2
|
Inferrera F, Marino Y, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Impaired mitochondrial quality control in fibromyalgia: Mechanisms involved in skeletal muscle alteration. Arch Biochem Biophys 2024; 758:110083. [PMID: 38969196 DOI: 10.1016/j.abb.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Fibromyalgia (FMS) is a persistent syndrome marked by widespread musculoskeletal pain and behavioural symptoms. Given the hypothesis linking FMS aetiology to mitochondrial dysfunction and oxidative stress, we examined the biochemical correlation among these factors by studying specific proteins associated with mitochondrial homeostasis in muscle. Additionally, this study investigated the role of Boswellia serrata gum resin extract (BS), known for its various functions, including the potent induction of antioxidant enzymes, in determining protective or reparative mechanisms in the muscle cells. Sprague-Dawley rats were injected with reserpine to induce FMS. These animals exhibited moderate changes in hind limb skeletal muscles, experiencing mobility difficulties. Additionally, there were noteworthy morphological and ultrastructural alterations, along with the expression of myogenin, mitochondrial enzymes and oxidative stress markers in the gastrocnemius muscle. Interestingly, BS demonstrated a reduction in spontaneous motor activity difficulties. Moreover, BS showed a positive impact on musculoskeletal morphostructural aspects, as well as a decrease in oxidative stress and mitochondrial alterations. In particular, BS restored the mRNA expression of citrate synthase and cytochrome-c oxidase subunit II and the activity of electron transfer chain complexes. BS also influenced mitochondrial biogenesis, upregulating PGC-1α expression and the related transcription factors (Nrf1, Tfam, Nrf2, FOXO3a, SIRT3, GCLC, NQO1, SOD2 and GPx4), oxidative stress (lipid peroxidation, GSH levels and GSH-Px activity) and mitochondrial dynamics and function (Mnf2 expression and CoQ10 levels). Overall, this study underlined the key role of the mitochondrial alteration in FMS and that BS had a very high antioxidant effect in these organelles and also in the cells.
Collapse
Affiliation(s)
- Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125, Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy.
| |
Collapse
|
3
|
Teixeira-Fonseca JL, Souza DS, Conceição MRDL, Marques LP, Durço AO, Silva PLD, Joviano-Santos JV, Santos-Miranda A, Roman-Campos D. In vivo tebuconazole administration impairs heart electrical function and facilitates the occurrence of dobutamine-induced arrhythmias: involvement of reactive oxygen species. Food Chem Toxicol 2024; 187:114596. [PMID: 38556154 DOI: 10.1016/j.fct.2024.114596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
Tebuconazole (TEB), a widely used pesticide in agriculture to combat fungal infections, is commonly detected in global food, potable water, groundwater, and human urine samples. Despite its known in vivo toxicity, its impact on heart function remains unclear. In a 28-day study on male Wistar rats (approximately 100 g), administering 10 mg/kg/day TEB or a vehicle (control) revealed no effect on body weight gain or heart weight, but an increase in the infarct area in TEB-treated animals. Notably, TEB induced time-dependent changes in in vivo electrocardiograms, particularly prolonging the QT interval after 28 days of administration. Isolated left ventricular cardiomyocytes exposed to TEB exhibited lengthened action potentials and reduced transient outward potassium current. TEB also increased reactive oxygen species (ROS) production in these cardiomyocytes, a phenomenon reversed by N-acetylcysteine (NAC). Furthermore, TEB-treated animals, when subjected to an in vivo dobutamine (Dob) and caffeine (Caf) challenge, displayed heightened susceptibility to severe arrhythmias, a phenotype prevented by NAC. In conclusion, TEB at the no observed adverse effect level (NOAEL) dose adversely affects heart electrical function, increases arrhythmic susceptibility, partially through ROS overproduction, and this phenotype is reversible by scavenging ROS with NAC.
Collapse
Affiliation(s)
- Jorge Lucas Teixeira-Fonseca
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Brazil
| | - Diego Santos Souza
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Leisiane Pereira Marques
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Brazil
| | - Aimée Obolari Durço
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Brazil; Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Polyana Leal da Silva
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Brazil
| | - Julliane V Joviano-Santos
- Postgraduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Investigações NeuroCardíacas, Ciências Médicas de Minas Gerais (LINC CMMG), Belo Horizonte, Minas Gerais, Brazil
| | - Artur Santos-Miranda
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danilo Roman-Campos
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Brazil.
| |
Collapse
|
4
|
Interdonato L, Marino Y, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Franco GA, Fusco R, Cuzzocrea S, Di Paola R. Oxidative stress and mitochondrial dysfunction in brain of vinclozolin exposed animals. Neurochem Int 2024; 174:105681. [PMID: 38341035 DOI: 10.1016/j.neuint.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Vinclozolin (VCZ) is a widely used fungicide in agriculture, especially in fruits and wine. Various studies have detailed the effects of VCZ exposure on different organs, but no information is available on its effects on brain tissues. This paper investigated the effects of VCZ exposure on the oxidative stress and mitochondrial dysfunction in brain tissue. C57BL/6 mice were exposed to VCZ (100 mg/kg) by oral gavage for 28 days. Mitochondrial homeostasis, often known as mitochondrial quality control, involves a range of processes, including mitochondrial biogenesis, mitochondrial fusion and fission, mitophagy and autophagy. VCZ administration modified the mRNA expression levels of Sirt1, Sirt3, PGC-1α, TFAM, Nrf1, VDAC-1 and Cyt c in brain tissue, as compared to control animals (CTR). The analyses also showed increased oxidative stress, in particular VCZ administration reduced SOD and CAT activities and GSH levels while increased T-AOC levels and lipid peroxidation. Additionally, brain tissues from VCZ group showed DNA oxidation (increased PARP-1 immunostaining) and apoptosis (increased TUNEL+ cells, increased expression of Bax mRNA level and reduced Bcl-2 levels). Western blot and immunohistochemical analyses showed increased mitophagic pathway with the accumulation of PINK1 and Parkin in mitochondria. Additionally, autophagic pathway was also increased with the increased expression and colocalization of LC3 with Neun and GFAP. Overall, this study showed that chronic VCZ exposure impaired mitochondrial homeostasis and increased oxidative stress in brain tissues.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| | | | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| |
Collapse
|