1
|
Gamal H, Ismail KA, Omar AMME, Teleb M, Abu-Serie MM, Huang S, Abdelsattar AS, Zamponi GW, Fahmy H. Non-small cell lung cancer sensitisation to platinum chemotherapy via new thiazole-triazole hybrids acting as dual T-type CCB/MMP-9 inhibitors. J Enzyme Inhib Med Chem 2024; 39:2388209. [PMID: 39140776 PMCID: PMC11328607 DOI: 10.1080/14756366.2024.2388209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Cisplatin remains the unchallenged standard therapy for NSCLC. However, it is not completely curative due to drug resistance and oxidative stress-induced toxicity. Drug resistance is linked to overexpression of matrix metalloproteinases (MMPs) and aberrant calcium signalling. We report synthesis of novel thiazole-triazole hybrids as MMP-9 inhibitors with T-type calcium channel blocking and antioxidant effects to sensitise NSCLC to cisplatin and ameliorate its toxicity. MTT and whole cell patch clamp assays revealed that 6d has a balanced profile of cytotoxicity (IC50 = 21 ± 1 nM, SI = 12.14) and T-type calcium channel blocking activity (⁓60% at 10 μM). It exhibited moderate ROS scavenging activity and nanomolar MMP-9 inhibition (IC50 = 90 ± 7 nM) surpassing NNGH with MMP-9 over -2 and MMP-10 over -13 selectivity. Docking and MDs simulated its receptor binding mode. Combination studies confirmed that 6d synergized with cisplatin (CI = 0.69 ± 0.05) lowering its IC50 by 6.89 folds. Overall, the study introduces potential lead adjuvants for NSCLC platinum-based therapy.
Collapse
Affiliation(s)
- Hassan Gamal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Khadiga A Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
| | - A-Mohsen M E Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Sun Huang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Abdalla S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Sciences and Technology, October Gardens, Giza, Egypt
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Hesham Fahmy
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
2
|
Zhou S, Zhang Q, Xu J, Xiang R, Dong X, Zhou X, Liu Z. CAP superfamily proteins in human: a new target for cancer therapy. Med Oncol 2024; 41:306. [PMID: 39499355 DOI: 10.1007/s12032-024-02548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The CAP (Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1) superfamily proteins (CAP proteins) are found in all kingdoms of life. The cysteine-rich secreted proteins are prevalent in human organs and tissues and serve as critical signaling molecules within cells, regulating a wide range of biochemical processes in the human body. Due to their involvement in numerous biological processes, CAP proteins have recently attracted significant attention, particularly in the context of tumorigenesis and cancer therapy. This review summarizes the expression patterns and roles of CAP proteins in various cancers. Additionally, it analyzes the mechanisms by which CAP proteins affect cancer cell proliferation and survival, regulate epithelial-mesenchymal transition, influence drug resistance, and regulate epigenetics. The review reveals that CAP proteins play distinct roles in various signaling pathways, such as the MAPK, PI3K-Akt, and p53 pathways, which are crucial for tumor progression. Furthermore, this review summarizes the tumor-inhibiting function of CAP proteins and their potential as cancer biomarkers. These findings suggest that CAP proteins represent a promising new target for innovative cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shenao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoping Dong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
3
|
Li N, Li H, Wei L, Chen H, Wu Z, Yuwen S, Yang S. The Downregulation of MMP23B Facilitates the Suppression of Vitality and Induction of Apoptosis in Endometrial Cancer Cells. Reprod Sci 2024; 31:3452-3461. [PMID: 38782818 PMCID: PMC11527946 DOI: 10.1007/s43032-024-01581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Endometrial cancer is a malignant tumor that commonly occurs in the female reproductive system and its incidence is still increasing. The mechanism of the development of endometrial cancer has not yet been fully clarified, so we need to continuously study the relevant mechanisms of endometrial cancer and continue to explore its biomarkers in order to discover more precise and effective treatment methods for endometrial cancer. RT-qPCR (Real-Time quantitative Polymerase Chain Reaction) experiments were used to detect the expression level of MMP23B (Matrix Metalloproteinase 23B) in endometrial cancer cells; the clinical data of the TCGA (The Cancer Genome Atlas) database were downloaded, and gene expression profiles were analyzed to investigate the correlation between MMP23B (Matrix Metalloproteinase 23B) and the survival prognosis of endometrial cancer, and functional enrichment analysis was performed on MMP23B (Matrix Metalloproteinase 23B) related genes. After silencing MMP23B (Matrix Metalloproteinase 23B), CCK8 (Cell Counting Kit-8), RT-qPCR (Real-Time quantitative Polymerase Chain Reaction), scratch assay, and transwell assay were used to detect cell viability, levels of apoptotic factors, migration rate, and invasion number of endometrial cancer, respectively. MMP23B (Matrix Metalloproteinase 23B) was highly expressed in endometrial cancer, which is closely related to a poor survival prognosis for endometrial cancer, and may act on endometrial cancer through apoptosis-related functions. The downregulation of MMP23B (Matrix Metalloproteinase 23B) reduced the cell viability of endometrial cancer cells, upregulated the expression levels of CASP3 (Caspase-3), CASP8 (Caspase-8) and CASP9 (Caspase-9) in cells, and inhibited cell migration and invasion.
Collapse
Affiliation(s)
- Ning Li
- Department of Gynaecology and Obstetrics, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hua Li
- Department of Pathology, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lijuan Wei
- Institute of Basic Medical Science, Medicine and Health Research Institute of Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Hui Chen
- Institute of Basic Medical Science, Medicine and Health Research Institute of Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Zhaorong Wu
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Si Yuwen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Sufang Yang
- Department of Reproductive Health and Infertility, Guangxi International Zhuang Medicine Hospital, Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Varlı M, Lee K, Bin Kang K, Kim H. Unveiling the anti-metastatic activity of monoterpene indole alkaloids targeting MMP9 in cancer cells, with a focus on pharmacokinetic and cellular insights. Mol Cells 2024:100143. [PMID: 39481856 DOI: 10.1016/j.mocell.2024.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
Distant metastasis, together with acquired resistance, limits the therapeutic impact of chemotherapy and molecularly targeted therapies. The properties of the tumor microenvironment determine how sensitive or resistant various cancers are to specific pharmacological treatments. Matrix metalloproteinase 9 (MMP9) is widely known for its ability to break down the extracellular matrix and it also modulates the motility of cancer cells. Here, our goal was to identify compounds that target MMP9 and evaluate their capacity to inhibit the motility of cancer cells. The anti-metastatic effect of monoterpene indole alkaloids (MIAs) on cell viability and motility was evaluated by MTT assay, migration assay, invasion assay, qRT-PCR, pathway-focusedexpression analysis, Western blotting, reporter assay, molecular docking simulation, and target prediction. MIA compounds target MMP9. MIAs inhibited the expression of p-EGFR, p-Akt, p-JNK and cyclin D1. Additionally, MIAs had predicted favorable pharmacokinetic profile and drug-like properties. Furthermore, among the MIA compounds lyaloside and 5(S)-5 carbomethoxy strictosidine had low cytotoxicity and regulated cancer-related signaling, including cell migration, cell invasion, epithelial-mesenchymal transition and immune evasion. Our findings demonstrated that the MIAs used in this study have potential anti-metastasis properties that occur via MMP9-mediated regulation of cancer signaling and have the potential to be used therapeutically at safe doses.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon 57922, Korea.
| | - Kyungha Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul 04310, Korea.
| | - Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul 04310, Korea.
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon 57922, Korea.
| |
Collapse
|
5
|
Madzharova E, Sabino F, Kalogeropoulos K, Francavilla C, Auf dem Keller U. Substrate O-glycosylation actively regulates extracellular proteolysis. Protein Sci 2024; 33:e5128. [PMID: 39074261 DOI: 10.1002/pro.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
Extracellular proteolysis critically regulates cellular and tissue responses and is often dysregulated in human diseases. The crosstalk between proteolytic processing and other major post-translational modifications (PTMs) is emerging as an important regulatory mechanism to modulate protease activity and maintain cellular and tissue homeostasis. Here, we focus on matrix metalloproteinase (MMP)-mediated cleavages and N-acetylgalactosamine (GalNAc)-type of O-glycosylation, two major PTMs of proteins in the extracellular space. We investigated the influence of truncated O-glycan trees, also referred to as Tn antigen, following the inactivation of C1GALT1-specific chaperone 1 (COSMC) on the general and MMP9-specific proteolytic processing in MDA-MB-231 breast cancer cells. Quantitative assessment of the proteome and N-terminome using terminal amine isotopic labelling of substrates (TAILS) technology revealed enhanced proteolysis by MMP9 within the extracellular proteomes of MDA-MB-231 cells expressing Tn antigen. In addition, we detected substantial modifications in the proteome and discovered novel ectodomain shedding events regulated by the truncation of O-glycans. These results highlight the critical role of mature O-glycosylation in fine-tuning proteolytic processing and proteome homeostasis by modulating protein susceptibility to proteolytic degradation. These data suggest a complex interplay between proteolysis and O-GalNAc glycosylation, possibly affecting cancer phenotypes.
Collapse
Affiliation(s)
- Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fabio Sabino
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Chiara Francavilla
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Latronico T, Petraglia T, Sileo C, Bilancia D, Rossano R, Liuzzi GM. Inhibition of MMP-2 and MMP-9 by Dietary Antioxidants in THP-1 Macrophages and Sera from Patients with Breast Cancer. Molecules 2024; 29:1718. [PMID: 38675538 PMCID: PMC11051835 DOI: 10.3390/molecules29081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, the main antioxidants of diet, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of four polyphenolic compounds on ROS production and on the levels of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of breast cancer. THP-1 differentiated macrophages were activated by LPS and simultaneously treated with different doses of a green tea extract (GTE), resveratrol (RSV), curcumin (CRC) and an olive fruit extract (oliplus). By using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, we found that all of the tested compounds showed antioxidant activity in vitro. In addition, GTE, RSV and CRC were able to counteract ROS production induced by H2O2 in THP-1 cells. As assessed by a zymographic analysis of THP-1 supernatants and by an "in-gel zymography" of a pool of sera from patients with breast cancer, the antioxidant compounds used in this study inhibited both the activity and expression of MMP-2 and MMP-9 through different mechanisms related to their structures and to their ability to scavenge ROS. The results of this study suggest that the used antioxidants could be promising agents for the prevention and complementary treatment of breast cancer and other diseases in which MMPs play a pivotal role.
Collapse
Affiliation(s)
- Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (T.L.); (G.M.L.)
| | - Tania Petraglia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (T.P.); (C.S.)
| | - Carmela Sileo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (T.P.); (C.S.)
| | - Domenico Bilancia
- Operating Unit, Medical Oncology, Hospital “Azienda Ospedaliera S. Carlo”, 85100 Potenza, Italy;
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (T.P.); (C.S.)
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (T.L.); (G.M.L.)
| |
Collapse
|
7
|
Patnam S, Majumder B, Joshi P, Singh AD, Nagalla B, Kumar D, Biswas M, Ranjan A, Majumder PK, Rengan AK, Kamath AV, Ray A, Manda SV. Differential Expression of SRY-Related HMG-Box Transcription Factor 2, Oligodendrocyte Lineage Transcription Factor 2, and Zinc Finger E-Box Binding Homeobox 1 in Serum-Derived Extracellular Vesicles: Implications for Mithramycin Sensitivity and Targeted Therapy in High-Grade Glioma. ACS Pharmacol Transl Sci 2024; 7:137-149. [PMID: 38230292 PMCID: PMC10789128 DOI: 10.1021/acsptsci.3c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of glioma and is often resistant to traditional therapies. Evidence suggests that glioma stem cells (GSCs) contribute to this resistance. Mithramycin (Mit-A) targets GSCs and exhibits antitumor activity in GBM by affecting transcriptional targets such as SRY-related HMG-box transcription factor 2 (SOX2), oligodendrocyte lineage transcription factor 2 (OLIG2), and zinc finger E-box binding homeobox 1 (ZEB1). However, its clinical use has been limited by toxicity. This study explored the diagnostic potential of serum extracellular vesicles (EVs) to identify Mit-A responders. Serum EVs were isolated from 70 glioma patients, and targeted gene expression was analyzed using qRT-PCR. Using chemosensitivity assay, we identified 8 Mit-A responders and 17 nonresponders among 25 glioma patients. The M-score showed a significant correlation (p = 0.045) with isocitrate dehydrogenase 1 mutation but not other clinical variables. The genes SOX2 (p = 0.005), OLIG2 (p = 0.003), and ZEB1 (p = 0.0281) were found to be upregulated in the responder EVs. SOX2 had the highest diagnostic potential (AUC = 0.875), followed by OLIG2 (AUC = 0.772) and ZEB1 (AUC = 0.632).The combined gene panel showed significant diagnostic efficacy (AUC = 0.956) through logistic regression analysis. The gene panel was further validated in the serum EVs of 45 glioma patients. These findings highlight the potential of Mit-A as a targeted therapy for high-grade glioma based on differential gene expression in serum EVs. The gene panel could serve as a diagnostic tool to predict Mit-A sensitivity, offering a promising approach for personalized treatment strategies and emphasizing the role of GSCs in therapeutic resistance.
Collapse
Affiliation(s)
- Sreekanth Patnam
- Apollo
Hospitals Educational and Research Foundation (AHERF), Hyderabad, Hyderabad, Telangana 500033, India
- Department
of Biomedical Engineering, Indian Institute
of Technology, Kandi, Hyderabad 502285, India
| | - Biswanath Majumder
- Farcast
Biosciences, Bangalore, Karnataka 560100, India
- Oncology
Division, Bugworks Research India Pvt. Ltd., C-CAMP, Bangalore, Karnataka 560065, India
| | - Parth Joshi
- Department
of Neurosurgery, Apollo Hospitals, Hyderabad, Telangana 500029, India
| | - Anula Divyash Singh
- Apollo
Hospitals Educational and Research Foundation (AHERF), Hyderabad, Hyderabad, Telangana 500033, India
- Department
of Biomedical Engineering, Indian Institute
of Technology, Kandi, Hyderabad 502285, India
| | - Balakrishna Nagalla
- Apollo
Institute of Medical Sciences and Research, Hyderabad, Telangana, Hyderabad 500090, India
| | - Dilli Kumar
- Farcast
Biosciences, Bangalore, Karnataka 560100, India
| | | | - Alok Ranjan
- Department
of Neurosurgery, Apollo Hospitals, Hyderabad, Telangana 500029, India
| | - Pradip K. Majumder
- Department
of Cancer Biology, Praesidia Biotherapeutics, 1167 Massachusetts Avenue, Arlington, Massachusetts 02476, United States
| | - Aravind Kumar Rengan
- Department
of Biomedical Engineering, Indian Institute
of Technology, Kandi, Hyderabad 502285, India
| | | | - Amitava Ray
- Department
of Neurosurgery, Apollo Hospitals, Hyderabad, Telangana 500029, India
- Exsegen
Genomics Research Pvt.Ltd, Hyderabad, Telangana 500033, India
| | - Sasidhar Venkata Manda
- Apollo
Hospitals Educational and Research Foundation (AHERF), Hyderabad, Hyderabad, Telangana 500033, India
- UrvogelBio
Private Ltd, Hyderabad, Telangana 500096, India
| |
Collapse
|
8
|
Yurttaş L, Evren AE, Kubilay A, Aksoy MO, Temel HE, Akalın Çiftçi G. Synthesis of Some New 1,3,4-Oxadiazole Derivatives and Evaluation of Their Anticancer Activity. ACS OMEGA 2023; 8:49311-49326. [PMID: 38162760 PMCID: PMC10753699 DOI: 10.1021/acsomega.3c07776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
In this work, some new 2-[(5-((2-acetamidophenoxy)methyl)-1,3,4-oxadiazol-2-yl)thio]acetamide derivatives (4a-4l) were synthesized and studied for their anticancer activity. Twelve new compounds were tested on the A549 human lung cancer cell line, C6 rat glioma cell line, and L929 murine fibroblast cell line. Compounds 4f, 4i, 4k, and 4l (IC50: 1.59-7.48 μM), and especially 4h (IC50: <0.14 μM), exhibited excellent cytotoxic profile on A549 with selectivity. Compounds 4g and 4h showed remarkable antiproliferative activity on the C6 cell line with IC50 values of 8.16 and 13.04 μM, respectively. The compounds with the lowest IC50 value on the A549 cell line (4f, 4h, 4i, 4k, and 4l) were further studied to determine the mechanism of action. These compounds were found to induce apoptosis with a higher ratio (16.10-21.54%) than that of the standard drug cisplatin (10.07%). Compound 4f displayed mitochondrial membrane depolarization and caspase-3 activation at most, whereas compounds 4h (89.66%) and 4i (78.78%) had outstanding retention rates in the G0/G1phase of the cell cycle (cisplatin 74.75%). Compounds 4f, 4g, 4h, and 4l exhibited matrix metalloproteinase-9 (MMP-9) inhibition higher than 75% at 100 μg/mL; even IC50 values were found to be 1.65 and 2.55 μM for 4h and 4l. In addition, in silico physicochemical properties of the compounds and molecular docking interaction of compound 4h on the MMP-9 enzyme were evaluated; the desired and expected results were obtained.
Collapse
Affiliation(s)
- Leyla Yurttaş
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Asaf Evrim Evren
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
- Department
of Pharmacy Services, Vocational School of Health Services, Bilecik Şeyh Edebali University, 11000 Bilecik, Turkey
| | - Aslıhan Kubilay
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Mehmet Onur Aksoy
- Faculty
of Pharmacy, Department of Biochemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Halide Edip Temel
- Faculty
of Pharmacy, Department of Biochemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Faculty
of Pharmacy, Department of Biochemistry, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
9
|
Xiong HD, Tang LL, Chen HJ, Wu Y, Li WY, Wen SJ, Lin YK. Identification of immune microenvironment changes, immune-related pathways and genes in male androgenetic alopecia. Medicine (Baltimore) 2023; 102:e35242. [PMID: 37746940 PMCID: PMC10519577 DOI: 10.1097/md.0000000000035242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Although androgenetic alopecia (AGA) is classified as a non-inflammatory alopecia, histological evidence of microinflammation has long been recognized. However, changes in the immune microenvironment, immune-related pathways and the expression of immune-related genes (IRGs) involved in AGA remain unclear. METHODS The microarray gene expression data (GSE36169) from patients with male AGA were analyzed. gene set enrichment analysis (GSEA) among statistically changed genes was done. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses among differentially expressed genes were performed. differentially expressed genes were screened to identify IRGs based on the ImmPort database. The cytohubba-MCC plugin of Cytoscape was applied to screen hub immune genes. The infiltration levels of 28 immune cells were quantified adopting single-sample GSEA (ssGSEA) algorithm. The microarray gene expression data (GSE90594) of male AGA was analyzed to validate hub IRGs genes and differential infiltrated immune cells. RESULTS The ssGSEA revealed γδT cell, central memory CD8+ T cell, mast cell, immature B cell, activated CD8+ T cell, effector memory CD4+ T cell, eosinophil and neutrophil were significantly increased infiltration in the bald scalp. GSEA showed statistically changed genes were most enriched in immune related pathways, including innate immune system, adaptive immune system, cytokine signaling, interferon-γ signaling, interferon signaling and interleukins signaling. The 4 hub IRGs, including matrix metallopeptidase 9, protein tyrosine phosphatase receptor type C, bone morphogenetic protein 2, and thrombospondin 1, were enriched in the pathways of allograft rejection, coagulation and interferon-γ response. CONCLUSION In summary, we proposed that the increase in γδ T cells, central memory CD8+ T cells, activated CD8+ T cell as well as the infiltration of mast cells contributed to immune microenvironment changes in male AGA. The 4 hub IRGs may be involved in the development and progression of hair loss in male AGA through interferon-γ signal pathways.
Collapse
Affiliation(s)
- Hong-Di Xiong
- Department of Dermatology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu-Lu Tang
- Department of Dermatology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hai-Ju Chen
- Department of Dermatology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Wu
- Department of Dermatology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen-Yu Li
- Department of Dermatology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Si-Jian Wen
- Department of Dermatology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - You-Kun Lin
- Department of Dermatology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|