1
|
Shetty SS, Ram Padam KS, Sharma M, Kudva A, Patel P, Radhakrishnan R. Novel transcripts of EMT driving the malignant transformation of oral submucous fibrosis. Sci Rep 2025; 15:3294. [PMID: 39865173 PMCID: PMC11770107 DOI: 10.1038/s41598-025-87790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025] Open
Abstract
Oral submucous fibrosis (OSF) is a chronic, progressive, and fibrotic condition of the oral mucosa that carries an elevated risk of malignant transformation. We aimed to identify and validate novel genes associated with the regulation of epithelial-to-mesenchymal transition (EMT) in OSF. Genes regulating EMT were identified through differential gene expression analysis, using a LogFC threshold of -1 and + 1 and a padj value < 0.05, based on data from GEO datasets and the TCGA-HNSC datasets. The curated EMT genes were correlated with functional cancer states and subjected to clustering to identify candidate genes. Integration of bioinformatics and proteomics led to the discovery of the EMT genes MMP9, SPARC, and ITGA5 as novel candidates. Comprehensive pathway and immunohistochemical analyses confirmed their roles in regulating EMT in OSF, oral squamous cell carcinoma (OSCC), and OSF-associated squamous cell carcinoma (OSFSCC). The significant roles of MMP9, SPARC, and ITGA5 in fibrosis and malignancy suggest a novel mechanism in which fibrosis-associated type 2 EMT undergoes transition to type 3 EMT, driving OSF towards malignancy.
Collapse
Affiliation(s)
- Smitha Sammith Shetty
- Department of Oral and Maxillofacial Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mohit Sharma
- Department of Oral Pathology, SGT Dental College Hospital & Research Institute, Gurugram, 122505, Haryana, India
| | - Adarsh Kudva
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Pratik Patel
- Sangee Oral Pathology Center, Haripura, Surat, 395003, Gujarat, India
| | - Raghu Radhakrishnan
- Department of Oral and Maxillofacial Pathology and Microbiology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S102TA, UK.
- Unit of Oral and Maxillofacial Pathology, Oman Dental College, P.O Box 835, Muscat, Wattayah 116, Oman.
| |
Collapse
|
2
|
Sel FA, Oğuz FS. Cancer and Secretomes: HLA-G and Cancer Puzzle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 39841384 DOI: 10.1007/5584_2024_843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Among the mechanisms, cancer cells develop to elude immune system, immune regulation and the use of molecules that play important roles in immune escape stand out. One of these molecules, the human leukocyte antigen G (HLA-G), plays an important role in the maintenance of immune tolerance and contributes to the progression of cancer by exerting an immunosuppressive effect. By creating an immunosuppressive field in the microscopic environment of the tumor, the aberrant expression of HLA-G facilitates the evading of cancer cells from the immune system and contributes to the progression of the disease. It is important to study how HLA-Gs interact with secretome components, especially at the level of specific components, to develop treatment strategies that prevent cancer cells evading the immune system. Cancer cells may be recognized and targeted by the immune system by reducing the inhibitory effect of HLA-G on immune cells and by neutralizing tumor-promoting components of the secretome. This review focuses on the interaction of specific cancer cell secretomes and HLA-G. Here we also investigate the role of this interaction in tumor immune escape strategies.
Collapse
Affiliation(s)
- Figen Abatay Sel
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Fatma Savran Oğuz
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Daum S, Decristoforo L, Mousa M, Salcher S, Plattner C, Hosseinkhani B, Trajanoski Z, Wolf D, Carmeliet P, Pircher A. Unveiling the immunomodulatory dance: endothelial cells' function and their role in non-small cell lung cancer. Mol Cancer 2025; 24:21. [PMID: 39819502 PMCID: PMC11737145 DOI: 10.1186/s12943-024-02221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 12/27/2024] [Indexed: 01/19/2025] Open
Abstract
The dynamic interactions between tumor endothelial cells (TECs) and the immune microenvironment play a critical role in the progression of non-small cell lung cancer (NSCLC). In general, endothelial cells exhibit diverse immunomodulatory properties, influencing immune cell recruitment, antigen presentation, and regulation of immune checkpoint expression. Understanding the multifaceted roles of TECs as well as assigning specific functional hallmarks to various TEC phenotypes offer new avenues for targeted development of therapeutic interventions, particularly in the context of advanced immunotherapy and anti-angiogenic treatments. This review provides insights into the complex interplay between TECs and the immune system in NSCLC including discussion of potential optimized therapeutic opportunities.
Collapse
Affiliation(s)
- Sophia Daum
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Lilith Decristoforo
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Stefan Salcher
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Christina Plattner
- Institute of Bioinformatics, Biocenter Medical University Innsbruck, Innsbruck, Austria
| | - Baharak Hosseinkhani
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), VIB Center for Cancer Biology, KU Leuven, VIB, Leuven, Belgium
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Biocenter Medical University Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria
| | - Peter Carmeliet
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), VIB Center for Cancer Biology, KU Leuven, VIB, Leuven, Belgium
| | - Andreas Pircher
- Internal Medicine 5, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Vempati RK, Malla RR. Coralyne Targets the Catalytic Domain of MMP9: An In Silico and In Vitro Investigation. Crit Rev Oncog 2025; 30:71-89. [PMID: 39819436 DOI: 10.1615/critrevoncog.2024056393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Coralyne (COR) is a protoberberine-like isoquinoline alkaloid, and it is known for double-stranded (ds) DNA intercalation and topoisomerase inhibition. It can also sensitize cancer cells through various mechanisms. COR reduces the proliferation and migration of breast cancer cells by inhibiting the expression and activity of matrix metalloproteinase 9 (MMP9). However, the mechanism involved in the inhibitory activity of COR on MMP9 is not known. In the present study, in silico docking studies showed that COR binds to the active site of MMP9 catalytic domain (MMP9-CD) with considerable affinity. The binding affinity of COR to the MMP9-CD, estimated by three different web servers: CB Dock, Seam Dock, and PyRx, was found to be either -7.4 or -7.5 kcal/mol. Another web server that is routinely used for docking studies, Docking Server, has predicted a binding affinity of -5.9 kcal/mol. All four docking servers predicted the same binding site for COR within the MMP9-CD. Corroborating our docking results, molecular dynamic simulation studies have also shown that COR interacts with the same key active site amino acid residues of the MMP9-CD that are essential for its proteolytic function. Molecular mechanics with generalized born and surface area (MMGBSA) calculations using Schrodinger's prime module have shown that the binding free energy with which COR binds to MMP9 is -50 kcal/mol. It inhibited activity of recombinant human MMP9 activity and induced significant cytotoxicity and reduced the proliferation of MDA-MB 468 cells. Overall, our in silico and in vitro experiments show that COR potentially inhibits the activity of MMP9 by directly binding to the active site of its catalytic domain and possibly inhibits proliferation of MDA-MB 468 cells.
Collapse
Affiliation(s)
- Rahul Kumar Vempati
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, India
| | | |
Collapse
|
5
|
Wang W, Li J, Qie X. Comprehensive utilization of in silico approach and in vitro experiment to unveil the molecular mechanisms of mono (2-ethylhexyl) phthalate-induced lung adenocarcinoma. Bioorg Chem 2024; 153:107947. [PMID: 39520789 DOI: 10.1016/j.bioorg.2024.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Mono (2-ethylhexyl) phthalate (MEHP), the main bioactive metabolite of commonly used plasticizer Di (2-ethylhexyl) phthalate, has received increasing attention due to its carcinogenic toxicity. This study aims to systematically explore the molecular mechanisms underlying MEHP-induced lung adenocarcinoma (LUAD). Firstly, network toxicology was employed to construct the interaction network of MEHP-targeted LUAD-related proteins and identify core proteins. Subsequently, functional analyses were used to determine the key pathways of these proteins enriched. Next, expression and survival analyses of multiple public datasets were conducted to emphasize the importance of core genes, and an optimized prognostic model was constructed based on independent prognostic genes to explore the relationship of gene risk with immune infiltration and immunotherapy. Ultimately, molecular docking and dynamics simulation were used to predict the binding modes and affinities of MEHP with core proteins, and surface plasmon resonance experiments were utilized to further validate their direct interactions. The findings demonstrated that MEHP targets 167 LUAD-related proteins, including 28 core target proteins. These proteins form the critical networks that regulate cancer and immune-associated pathways to induce the occurrence and development of LUAD, and further coordinate patient prognosis and treatment by altering the immune microenvironment. Most importantly, their direct interactions (especially PTGS2) lay the structural foundation of MEHP regulating core proteins, greatly supporting its LUAD toxicity. In conclusion, this study introduces a novel approach for evaluating the safety of plasticizers and elucidates the molecular mechanisms behind MEHP-induced LUAD, thus offering new and effective targets and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Wenwen Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, China.
| | - Junying Li
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, Guangdong, China
| | - Xingwang Qie
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, HymonBio Co., Ltd, Suzhou 215434, Jiangsu, China
| |
Collapse
|
6
|
Gamal H, Ismail KA, Omar AMME, Teleb M, Abu-Serie MM, Huang S, Abdelsattar AS, Zamponi GW, Fahmy H. Non-small cell lung cancer sensitisation to platinum chemotherapy via new thiazole-triazole hybrids acting as dual T-type CCB/MMP-9 inhibitors. J Enzyme Inhib Med Chem 2024; 39:2388209. [PMID: 39140776 PMCID: PMC11328607 DOI: 10.1080/14756366.2024.2388209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Cisplatin remains the unchallenged standard therapy for NSCLC. However, it is not completely curative due to drug resistance and oxidative stress-induced toxicity. Drug resistance is linked to overexpression of matrix metalloproteinases (MMPs) and aberrant calcium signalling. We report synthesis of novel thiazole-triazole hybrids as MMP-9 inhibitors with T-type calcium channel blocking and antioxidant effects to sensitise NSCLC to cisplatin and ameliorate its toxicity. MTT and whole cell patch clamp assays revealed that 6d has a balanced profile of cytotoxicity (IC50 = 21 ± 1 nM, SI = 12.14) and T-type calcium channel blocking activity (⁓60% at 10 μM). It exhibited moderate ROS scavenging activity and nanomolar MMP-9 inhibition (IC50 = 90 ± 7 nM) surpassing NNGH with MMP-9 over -2 and MMP-10 over -13 selectivity. Docking and MDs simulated its receptor binding mode. Combination studies confirmed that 6d synergized with cisplatin (CI = 0.69 ± 0.05) lowering its IC50 by 6.89 folds. Overall, the study introduces potential lead adjuvants for NSCLC platinum-based therapy.
Collapse
Affiliation(s)
- Hassan Gamal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Khadiga A Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
| | - A-Mohsen M E Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Sun Huang
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Abdalla S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Sciences and Technology, October Gardens, Giza, Egypt
| | - Gerald W Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Hesham Fahmy
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
7
|
Varlı M, Lee K, Kang KB, Kim H. Unveiling the antimetastatic activity of monoterpene indole alkaloids targeting MMP9 in cancer cells, with a focus on pharmacokinetic and cellular insights. Mol Cells 2024; 47:100143. [PMID: 39481856 PMCID: PMC11625137 DOI: 10.1016/j.mocell.2024.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
Distant metastasis, together with acquired resistance, limits the therapeutic impact of chemotherapy and molecularly targeted therapies. The properties of the tumor microenvironment determine how sensitive or resistant various cancers are to specific pharmacological treatments. Matrix metalloproteinase 9 (MMP9) is widely known for its ability to break down the extracellular matrix and it also modulates the motility of cancer cells. Here, our goal was to identify compounds that target MMP9 and evaluate their capacity to inhibit the motility of cancer cells. The antimetastatic effect of monoterpene indole alkaloids (MIAs) on cell viability and motility was evaluated by methyl thiazolyl tetrazolium assay, migration assay, invasion assay, quantitative real-time polymerase chain reaction, pathway-focused expression analysis, Western blotting, reporter assay, molecular docking simulation, and target prediction. MIA compounds target MMP9. MIAs inhibited the expression of phospho-epidermal growth factor receptor, phospho-Akt, phospho-JNK, and cyclin D1. Additionally, MIAs had predicted favorable pharmacokinetic profile and drug-like properties. Furthermore, among the MIA compounds, lyaloside and 5(S)-5-carbomethoxystrictosidine had low cytotoxicity and regulated cancer-related signaling, including cell migration, cell invasion, epithelial-mesenchymal transition, and immune evasion. Our findings demonstrated that the MIAs used in this study have potential antimetastasis properties that occur via MMP9-mediated regulation of cancer signaling and have the potential to be used therapeutically at safe doses.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon 57922, Korea.
| | - Kyungha Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul 04310, Korea.
| | - Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul 04310, Korea.
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon 57922, Korea.
| |
Collapse
|
8
|
Song Q, Gao Y, Liu K, Tang Y, Man Y, Wu H. Gut microbial and metabolomics profiles reveal the potential mechanism of fecal microbiota transplantation in modulating the progression of colitis-associated colorectal cancer in mice. J Transl Med 2024; 22:1028. [PMID: 39548468 PMCID: PMC11566892 DOI: 10.1186/s12967-024-05786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024] Open
Abstract
PURPOSE Intestinal flora promotes the pathogenesis of colorectal cancer (CRC) through microorganisms and their metabolites. This study aimed to investigate the composition of intestinal flora in different stages of CRC progression and the effect of fecal microbiota transplantation (FMT) on CRC mice. METHODS The fecal microbiome from healthy volunteers (HC), colorectal adenoma (CRA), inflammatory bowel disease (IBD), and CRC patients were analyzed by 16s rRNA gene sequencing. In an azoxymethane (AOM)/dextran-sulfate-sodium (DSS)-induced CRC mouse, the effect of FMT from HC, CRA, CRC, and IBD patients on CRC mice was assessed by histological analysis. Expression of inflammation- EMT-associated proteins and Wnt/β-catenin pathway were assessed using qRT-PCR and western blot. The ratio of the fecal microorganisms and metabolomics alteration after FMT were also assessed. RESULT Prevotella, Faecalibacterium, Phascolarctobacterium, Veillonella, Alistipes, Fusobacterium, Oscillibacter, Blautia, and Ruminococcus abundance was different among HC, IBD, CRC, and CRA patients. HC-FMT alleviated disease progression and inflammatory response in CRC mice, inhibited splenic T help (Th)1 and Th17 cell numbers, and suppressed the EMT and Wnt/β-catenin pathways in tumor tissues of CRC mice. IBD-FMT, CRA-FMT, and CRC-FMT played deleterious roles; the CRC-FMT mice exhibited the most malignant phenotype. Compared with the non-FMT CRC mice, Muribaculaceae abundance was lower after FMT, especially lowest in the IBD-FMT group; while Lactobacillus abundance was higher after FMT and especially high in HC-FMT. Akkermansia and Ileibacterium abundance increased after FMT-HC compared to other groups. Metabolite correlation analysis revealed that Muribaculaceae abundance was significantly correlated with metabolites such as Betaine, LysoPC, and Soyasaponin III. Lactobacillus abundance was positively correlated with Taurocholic acid 3-sulfate, and Ileibacterium abundance was positively correlated with Linoleoyl ethanolamide. CONCLUSION The different intestinal microbiota communities of HC, IBD, CRA, and CRC patients may be attributed to the different modulation effects of FMT on CRC mice. CRC-FMT promoted, while HC-FMT inhibited the progress of CRC. Increased linoleoyl ethanolamide levels and abundance of Muribaculaceae, Akkermansia, and Ileibacterium and reduced Fusobacterium might participate in inhibiting CRC initiation and development. This study demonstrated that FMT intervention could restore the intestinal microbiota and metabolomics of CRC mice, suggesting FMT as a potential strategy for CRC therapy.
Collapse
Affiliation(s)
- Qishi Song
- Department of Oncology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Yongchao Gao
- Engineering Research Center of Applied Technology of Pharmacogenomics (Ministry of Education), Hunan Key Laboratory of Pharmacomicrobiomics, Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Liu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China
| | - Yukai Tang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China
| | - Yichun Man
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China
| | - Haijun Wu
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
9
|
Zhou S, Zhang Q, Xu J, Xiang R, Dong X, Zhou X, Liu Z. CAP superfamily proteins in human: a new target for cancer therapy. Med Oncol 2024; 41:306. [PMID: 39499355 DOI: 10.1007/s12032-024-02548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The CAP (Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1) superfamily proteins (CAP proteins) are found in all kingdoms of life. The cysteine-rich secreted proteins are prevalent in human organs and tissues and serve as critical signaling molecules within cells, regulating a wide range of biochemical processes in the human body. Due to their involvement in numerous biological processes, CAP proteins have recently attracted significant attention, particularly in the context of tumorigenesis and cancer therapy. This review summarizes the expression patterns and roles of CAP proteins in various cancers. Additionally, it analyzes the mechanisms by which CAP proteins affect cancer cell proliferation and survival, regulate epithelial-mesenchymal transition, influence drug resistance, and regulate epigenetics. The review reveals that CAP proteins play distinct roles in various signaling pathways, such as the MAPK, PI3K-Akt, and p53 pathways, which are crucial for tumor progression. Furthermore, this review summarizes the tumor-inhibiting function of CAP proteins and their potential as cancer biomarkers. These findings suggest that CAP proteins represent a promising new target for innovative cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shenao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoping Dong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
10
|
Li N, Li H, Wei L, Chen H, Wu Z, Yuwen S, Yang S. The Downregulation of MMP23B Facilitates the Suppression of Vitality and Induction of Apoptosis in Endometrial Cancer Cells. Reprod Sci 2024; 31:3452-3461. [PMID: 38782818 PMCID: PMC11527946 DOI: 10.1007/s43032-024-01581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Endometrial cancer is a malignant tumor that commonly occurs in the female reproductive system and its incidence is still increasing. The mechanism of the development of endometrial cancer has not yet been fully clarified, so we need to continuously study the relevant mechanisms of endometrial cancer and continue to explore its biomarkers in order to discover more precise and effective treatment methods for endometrial cancer. RT-qPCR (Real-Time quantitative Polymerase Chain Reaction) experiments were used to detect the expression level of MMP23B (Matrix Metalloproteinase 23B) in endometrial cancer cells; the clinical data of the TCGA (The Cancer Genome Atlas) database were downloaded, and gene expression profiles were analyzed to investigate the correlation between MMP23B (Matrix Metalloproteinase 23B) and the survival prognosis of endometrial cancer, and functional enrichment analysis was performed on MMP23B (Matrix Metalloproteinase 23B) related genes. After silencing MMP23B (Matrix Metalloproteinase 23B), CCK8 (Cell Counting Kit-8), RT-qPCR (Real-Time quantitative Polymerase Chain Reaction), scratch assay, and transwell assay were used to detect cell viability, levels of apoptotic factors, migration rate, and invasion number of endometrial cancer, respectively. MMP23B (Matrix Metalloproteinase 23B) was highly expressed in endometrial cancer, which is closely related to a poor survival prognosis for endometrial cancer, and may act on endometrial cancer through apoptosis-related functions. The downregulation of MMP23B (Matrix Metalloproteinase 23B) reduced the cell viability of endometrial cancer cells, upregulated the expression levels of CASP3 (Caspase-3), CASP8 (Caspase-8) and CASP9 (Caspase-9) in cells, and inhibited cell migration and invasion.
Collapse
Affiliation(s)
- Ning Li
- Department of Gynaecology and Obstetrics, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hua Li
- Department of Pathology, Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Lijuan Wei
- Institute of Basic Medical Science, Medicine and Health Research Institute of Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Hui Chen
- Institute of Basic Medical Science, Medicine and Health Research Institute of Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Zhaorong Wu
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Si Yuwen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Sufang Yang
- Department of Reproductive Health and Infertility, Guangxi International Zhuang Medicine Hospital, Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| |
Collapse
|
11
|
杨 玉, 刘 雪, 刘 伟, 周 星, 张 振, 胡 妍, 刘 培, 李 娴, 刘 浩, 李 姗. [Aumolertinib combined with anlotinib inhibits proliferation of non-small cell lung cancer cells by down-regulating the PI3K/AKT pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1965-1975. [PMID: 39523097 PMCID: PMC11526449 DOI: 10.12122/j.issn.1673-4254.2024.10.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate the inhibitory effect of aumolertinib combined with anlotinib on proliferation of non-small cell lung cancer (NSCLC) cells. METHODS CCK-8 assay, colony formation assay, and flow cytometry were used to assess the effect of different concentrations of aumolertinib or anlotinib on proliferation, survival, and apoptosis of PC-9 and HCC827 cells, and their synergistic effect was evaluated using the SynergyFinder model. In PC-9 and HCC827 cells treated with aumolertinib combined with anlotinib, the changes in cell invasion and migration abilities were assessed with Transwell assay, and the expressions of apoptosis- and invasion/migration-related proteins (Bax, Bcl-2, E-cadherin, vimentin, MMP2, and MMP9) and the key PI3K-Akt pathway proteins were detected using Western blotting. RESULTS In PC-9 cells, the IC50 of aumolertinib and anlotinib was 1.701 μmol/L and 4.979 μmol/L, respectively, with a synergy score (ZIP) of 19.112; in HCC827 cells, their IC50 was 2.961 μmol/L and 7.934 μmol/L, respectively, with a ZIP of 12.325. Compared with aumolertinib and anlotinib used alone, their combined treatment more strongly inhibited the proliferation and survival, enhanced apoptosis and suppressed invasion and migration abilities of PC-9 and HCC827 cells. Western blotting showed that in both PC-9 and HCC827 cells, the combined treatment significantly upregulated the expressions of E-cadherin and Bax proteins, downregulated the expressions of Bcl-2, vimentin, MMP2, and MMP9 proteins, and reduced phosphorylation levels of PI3K and Akt. CONCLUSION Aumolertinib combined with anlotinib can effectively inhibit NSCLC cell proliferation by downregulating the PI3K-Akt pathway, suggesting a potentially new option for NSCLC treatment.
Collapse
|
12
|
Madzharova E, Sabino F, Kalogeropoulos K, Francavilla C, Auf dem Keller U. Substrate O-glycosylation actively regulates extracellular proteolysis. Protein Sci 2024; 33:e5128. [PMID: 39074261 DOI: 10.1002/pro.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
Extracellular proteolysis critically regulates cellular and tissue responses and is often dysregulated in human diseases. The crosstalk between proteolytic processing and other major post-translational modifications (PTMs) is emerging as an important regulatory mechanism to modulate protease activity and maintain cellular and tissue homeostasis. Here, we focus on matrix metalloproteinase (MMP)-mediated cleavages and N-acetylgalactosamine (GalNAc)-type of O-glycosylation, two major PTMs of proteins in the extracellular space. We investigated the influence of truncated O-glycan trees, also referred to as Tn antigen, following the inactivation of C1GALT1-specific chaperone 1 (COSMC) on the general and MMP9-specific proteolytic processing in MDA-MB-231 breast cancer cells. Quantitative assessment of the proteome and N-terminome using terminal amine isotopic labelling of substrates (TAILS) technology revealed enhanced proteolysis by MMP9 within the extracellular proteomes of MDA-MB-231 cells expressing Tn antigen. In addition, we detected substantial modifications in the proteome and discovered novel ectodomain shedding events regulated by the truncation of O-glycans. These results highlight the critical role of mature O-glycosylation in fine-tuning proteolytic processing and proteome homeostasis by modulating protein susceptibility to proteolytic degradation. These data suggest a complex interplay between proteolysis and O-GalNAc glycosylation, possibly affecting cancer phenotypes.
Collapse
Affiliation(s)
- Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fabio Sabino
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Chiara Francavilla
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Manoochehri H, Farrokhnia M, Sheykhhasan M, Mahaki H, Tanzadehpanah H. Key target genes related to anti-breast cancer activity of ATRA: A network pharmacology, molecular docking and experimental investigation. Heliyon 2024; 10:e34300. [PMID: 39108872 PMCID: PMC11301165 DOI: 10.1016/j.heliyon.2024.e34300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 01/07/2025] Open
Abstract
All-trans retinoic acid (ATRA) has promising activity against breast cancer. However, the exact mechanisms of ATRA's anticancer effects remain complex and not fully understood. In this study, a network pharmacology and molecular docking approach was applied to identify key target genes related to ATRA's anti-breast cancer activity. Gene/disease enrichment analysis for predicted ATRA targets was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID), the Comparative Toxicogenomics Database (CTD), and the Gene Set Cancer Analysis (GSCA) database. Protein-Protein Interaction Network (PPIN) generation and analysis was conducted via Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and cytoscape, respectively. Cancer-associated genes were evaluated using MyGeneVenn from the CTD. Differential expression analysis was conducted using the Tumor, Normal, and Metastatic (TNM) Plot tool and the Human Protein Atlas (HPA). The Glide docking program was used to predict ligand-protein binding. Treatment response predication and clinical profile assessment were performed using Receiver Operating Characteristic (ROC) Plotter and OncoDB databases, respectively. Cytotoxicity and gene expression were measured using MTT/fluorescent assays and Real-Time PCR, respectively. Molecular functions of ATRA targets (n = 209) included eicosanoid receptor activity and transcription factor activity. Some enriched pathways included inclusion body myositis and nuclear receptors pathways. Network analysis revealed 35 hub genes contributing to 3 modules, with 16 of them were associated with breast cancer. These genes were involved in apoptosis, cell cycle, androgen receptor pathway, and ESR-mediated signaling, among others. CCND1, ESR1, MMP9, MDM2, NCOA3, and RARA were significantly overexpressed in tumor samples. ATRA showed a high affinity towards CCND1/CDK4 and MMP9. CCND1, ESR1, and MDM2 were associated with poor treatment response and were downregulated after treatment of the breast cancer cell line with ATRA. CCND1 and ESR1 exhibited differential expression across breast cancer stages. Therefore, some part of ATRA's anti-breast cancer activity may be exerted through the CCND1/CDK4 complex.
Collapse
Affiliation(s)
- Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Farrokhnia
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Latronico T, Petraglia T, Sileo C, Bilancia D, Rossano R, Liuzzi GM. Inhibition of MMP-2 and MMP-9 by Dietary Antioxidants in THP-1 Macrophages and Sera from Patients with Breast Cancer. Molecules 2024; 29:1718. [PMID: 38675538 PMCID: PMC11051835 DOI: 10.3390/molecules29081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, the main antioxidants of diet, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of four polyphenolic compounds on ROS production and on the levels of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of breast cancer. THP-1 differentiated macrophages were activated by LPS and simultaneously treated with different doses of a green tea extract (GTE), resveratrol (RSV), curcumin (CRC) and an olive fruit extract (oliplus). By using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, we found that all of the tested compounds showed antioxidant activity in vitro. In addition, GTE, RSV and CRC were able to counteract ROS production induced by H2O2 in THP-1 cells. As assessed by a zymographic analysis of THP-1 supernatants and by an "in-gel zymography" of a pool of sera from patients with breast cancer, the antioxidant compounds used in this study inhibited both the activity and expression of MMP-2 and MMP-9 through different mechanisms related to their structures and to their ability to scavenge ROS. The results of this study suggest that the used antioxidants could be promising agents for the prevention and complementary treatment of breast cancer and other diseases in which MMPs play a pivotal role.
Collapse
Affiliation(s)
- Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (T.L.); (G.M.L.)
| | - Tania Petraglia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (T.P.); (C.S.)
| | - Carmela Sileo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (T.P.); (C.S.)
| | - Domenico Bilancia
- Operating Unit, Medical Oncology, Hospital “Azienda Ospedaliera S. Carlo”, 85100 Potenza, Italy;
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy; (T.P.); (C.S.)
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy; (T.L.); (G.M.L.)
| |
Collapse
|
15
|
Patnam S, Majumder B, Joshi P, Singh AD, Nagalla B, Kumar D, Biswas M, Ranjan A, Majumder PK, Rengan AK, Kamath AV, Ray A, Manda SV. Differential Expression of SRY-Related HMG-Box Transcription Factor 2, Oligodendrocyte Lineage Transcription Factor 2, and Zinc Finger E-Box Binding Homeobox 1 in Serum-Derived Extracellular Vesicles: Implications for Mithramycin Sensitivity and Targeted Therapy in High-Grade Glioma. ACS Pharmacol Transl Sci 2024; 7:137-149. [PMID: 38230292 PMCID: PMC10789128 DOI: 10.1021/acsptsci.3c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of glioma and is often resistant to traditional therapies. Evidence suggests that glioma stem cells (GSCs) contribute to this resistance. Mithramycin (Mit-A) targets GSCs and exhibits antitumor activity in GBM by affecting transcriptional targets such as SRY-related HMG-box transcription factor 2 (SOX2), oligodendrocyte lineage transcription factor 2 (OLIG2), and zinc finger E-box binding homeobox 1 (ZEB1). However, its clinical use has been limited by toxicity. This study explored the diagnostic potential of serum extracellular vesicles (EVs) to identify Mit-A responders. Serum EVs were isolated from 70 glioma patients, and targeted gene expression was analyzed using qRT-PCR. Using chemosensitivity assay, we identified 8 Mit-A responders and 17 nonresponders among 25 glioma patients. The M-score showed a significant correlation (p = 0.045) with isocitrate dehydrogenase 1 mutation but not other clinical variables. The genes SOX2 (p = 0.005), OLIG2 (p = 0.003), and ZEB1 (p = 0.0281) were found to be upregulated in the responder EVs. SOX2 had the highest diagnostic potential (AUC = 0.875), followed by OLIG2 (AUC = 0.772) and ZEB1 (AUC = 0.632).The combined gene panel showed significant diagnostic efficacy (AUC = 0.956) through logistic regression analysis. The gene panel was further validated in the serum EVs of 45 glioma patients. These findings highlight the potential of Mit-A as a targeted therapy for high-grade glioma based on differential gene expression in serum EVs. The gene panel could serve as a diagnostic tool to predict Mit-A sensitivity, offering a promising approach for personalized treatment strategies and emphasizing the role of GSCs in therapeutic resistance.
Collapse
Affiliation(s)
- Sreekanth Patnam
- Apollo
Hospitals Educational and Research Foundation (AHERF), Hyderabad, Hyderabad, Telangana 500033, India
- Department
of Biomedical Engineering, Indian Institute
of Technology, Kandi, Hyderabad 502285, India
| | - Biswanath Majumder
- Farcast
Biosciences, Bangalore, Karnataka 560100, India
- Oncology
Division, Bugworks Research India Pvt. Ltd., C-CAMP, Bangalore, Karnataka 560065, India
| | - Parth Joshi
- Department
of Neurosurgery, Apollo Hospitals, Hyderabad, Telangana 500029, India
| | - Anula Divyash Singh
- Apollo
Hospitals Educational and Research Foundation (AHERF), Hyderabad, Hyderabad, Telangana 500033, India
- Department
of Biomedical Engineering, Indian Institute
of Technology, Kandi, Hyderabad 502285, India
| | - Balakrishna Nagalla
- Apollo
Institute of Medical Sciences and Research, Hyderabad, Telangana, Hyderabad 500090, India
| | - Dilli Kumar
- Farcast
Biosciences, Bangalore, Karnataka 560100, India
| | | | - Alok Ranjan
- Department
of Neurosurgery, Apollo Hospitals, Hyderabad, Telangana 500029, India
| | - Pradip K. Majumder
- Department
of Cancer Biology, Praesidia Biotherapeutics, 1167 Massachusetts Avenue, Arlington, Massachusetts 02476, United States
| | - Aravind Kumar Rengan
- Department
of Biomedical Engineering, Indian Institute
of Technology, Kandi, Hyderabad 502285, India
| | | | - Amitava Ray
- Department
of Neurosurgery, Apollo Hospitals, Hyderabad, Telangana 500029, India
- Exsegen
Genomics Research Pvt.Ltd, Hyderabad, Telangana 500033, India
| | - Sasidhar Venkata Manda
- Apollo
Hospitals Educational and Research Foundation (AHERF), Hyderabad, Hyderabad, Telangana 500033, India
- UrvogelBio
Private Ltd, Hyderabad, Telangana 500096, India
| |
Collapse
|
16
|
Yurttaş L, Evren AE, Kubilay A, Aksoy MO, Temel HE, Akalın Çiftçi G. Synthesis of Some New 1,3,4-Oxadiazole Derivatives and Evaluation of Their Anticancer Activity. ACS OMEGA 2023; 8:49311-49326. [PMID: 38162760 PMCID: PMC10753699 DOI: 10.1021/acsomega.3c07776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
In this work, some new 2-[(5-((2-acetamidophenoxy)methyl)-1,3,4-oxadiazol-2-yl)thio]acetamide derivatives (4a-4l) were synthesized and studied for their anticancer activity. Twelve new compounds were tested on the A549 human lung cancer cell line, C6 rat glioma cell line, and L929 murine fibroblast cell line. Compounds 4f, 4i, 4k, and 4l (IC50: 1.59-7.48 μM), and especially 4h (IC50: <0.14 μM), exhibited excellent cytotoxic profile on A549 with selectivity. Compounds 4g and 4h showed remarkable antiproliferative activity on the C6 cell line with IC50 values of 8.16 and 13.04 μM, respectively. The compounds with the lowest IC50 value on the A549 cell line (4f, 4h, 4i, 4k, and 4l) were further studied to determine the mechanism of action. These compounds were found to induce apoptosis with a higher ratio (16.10-21.54%) than that of the standard drug cisplatin (10.07%). Compound 4f displayed mitochondrial membrane depolarization and caspase-3 activation at most, whereas compounds 4h (89.66%) and 4i (78.78%) had outstanding retention rates in the G0/G1phase of the cell cycle (cisplatin 74.75%). Compounds 4f, 4g, 4h, and 4l exhibited matrix metalloproteinase-9 (MMP-9) inhibition higher than 75% at 100 μg/mL; even IC50 values were found to be 1.65 and 2.55 μM for 4h and 4l. In addition, in silico physicochemical properties of the compounds and molecular docking interaction of compound 4h on the MMP-9 enzyme were evaluated; the desired and expected results were obtained.
Collapse
Affiliation(s)
- Leyla Yurttaş
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Asaf Evrim Evren
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
- Department
of Pharmacy Services, Vocational School of Health Services, Bilecik Şeyh Edebali University, 11000 Bilecik, Turkey
| | - Aslıhan Kubilay
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Mehmet Onur Aksoy
- Faculty
of Pharmacy, Department of Biochemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Halide Edip Temel
- Faculty
of Pharmacy, Department of Biochemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Faculty
of Pharmacy, Department of Biochemistry, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
17
|
Xiong HD, Tang LL, Chen HJ, Wu Y, Li WY, Wen SJ, Lin YK. Identification of immune microenvironment changes, immune-related pathways and genes in male androgenetic alopecia. Medicine (Baltimore) 2023; 102:e35242. [PMID: 37746940 PMCID: PMC10519577 DOI: 10.1097/md.0000000000035242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Although androgenetic alopecia (AGA) is classified as a non-inflammatory alopecia, histological evidence of microinflammation has long been recognized. However, changes in the immune microenvironment, immune-related pathways and the expression of immune-related genes (IRGs) involved in AGA remain unclear. METHODS The microarray gene expression data (GSE36169) from patients with male AGA were analyzed. gene set enrichment analysis (GSEA) among statistically changed genes was done. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses among differentially expressed genes were performed. differentially expressed genes were screened to identify IRGs based on the ImmPort database. The cytohubba-MCC plugin of Cytoscape was applied to screen hub immune genes. The infiltration levels of 28 immune cells were quantified adopting single-sample GSEA (ssGSEA) algorithm. The microarray gene expression data (GSE90594) of male AGA was analyzed to validate hub IRGs genes and differential infiltrated immune cells. RESULTS The ssGSEA revealed γδT cell, central memory CD8+ T cell, mast cell, immature B cell, activated CD8+ T cell, effector memory CD4+ T cell, eosinophil and neutrophil were significantly increased infiltration in the bald scalp. GSEA showed statistically changed genes were most enriched in immune related pathways, including innate immune system, adaptive immune system, cytokine signaling, interferon-γ signaling, interferon signaling and interleukins signaling. The 4 hub IRGs, including matrix metallopeptidase 9, protein tyrosine phosphatase receptor type C, bone morphogenetic protein 2, and thrombospondin 1, were enriched in the pathways of allograft rejection, coagulation and interferon-γ response. CONCLUSION In summary, we proposed that the increase in γδ T cells, central memory CD8+ T cells, activated CD8+ T cell as well as the infiltration of mast cells contributed to immune microenvironment changes in male AGA. The 4 hub IRGs may be involved in the development and progression of hair loss in male AGA through interferon-γ signal pathways.
Collapse
Affiliation(s)
- Hong-Di Xiong
- Department of Dermatology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu-Lu Tang
- Department of Dermatology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hai-Ju Chen
- Department of Dermatology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Wu
- Department of Dermatology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen-Yu Li
- Department of Dermatology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Si-Jian Wen
- Department of Dermatology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - You-Kun Lin
- Department of Dermatology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|