1
|
Wang L, Li F, Zhao K, Yang J, Sun H, Cui X, Dong W, Li E, Wang N. Comparative plastomes sheds light on phylogeny of Weigela. FRONTIERS IN PLANT SCIENCE 2024; 15:1487725. [PMID: 39534104 PMCID: PMC11554533 DOI: 10.3389/fpls.2024.1487725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Weigela Thunb. is a genus in the family Caprifoliaceae. All species in this genus have high ornamental and medicinal value. However, the genetic divergence between species and the phylogeny within Weigela is still unclear. Therefore, we sequenced and analyzed four plastomes from four different Weigela species to reveal the genetic divergence among species of this genus, and the phylogeny within Weigela. The four plastomes from Weigela ranged from 156,909 bp to 157,739 bp in size, and presented a typical circular quadripartite structure. Each complete plastome contained a pair of inverted repeat regions (23,592~24,957 bp), a larger single-copy (LSC) region (89,922~90,229 bp), and a small single-copy (SSC) region (17,668~20,429 bp). We identified three types of repeats, corresponding to 268 forward repeats, 128 palindromic repeats, and 867 tandem repeats, for a total of 1,263 long repeats. A total of 352 SSRs were identified from the four plastomes, and most of them were concentrated in the LSC region and the noncoding regions. Mononucleotide repeat units were the most frequently detected types of repeats, of which A/T repeat units were the most abundant. Three mutational hotspots (trnH-psbA, trnR-ndhF, and trnN-ndhF) were identified as candidate barcodes for Weigela species. Weigela belongs to Diervilloideae located at an early diverging position in the Caprifoliaceae. Within Weigela, W. japonica and W. floribunda were sister with W. subsessilis and W. florida. This study revealed the plastome structure and variation of four well-known Weigela species, and found three candidate barcodes for further study of four well-known Weigela species. In addition, the phylogenetic location of Weigela within the Caprifoliaceae was identified.
Collapse
Affiliation(s)
- Lei Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Fuxing Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Kexin Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Jie Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Haonan Sun
- College of Landscape and Tourism, Hebei Agricultural University, Baoding, China
| | - Xingyong Cui
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Enze Li
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, College of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ning Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Zeng MY, Li MH, Lan S, Yin WL, Liu ZJ. Comparative Phylogenomic Study of Malaxidinae (Orchidaceae) Sheds Light on Plastome Evolution and Gene Divergence. Int J Mol Sci 2024; 25:11181. [PMID: 39456963 PMCID: PMC11508673 DOI: 10.3390/ijms252011181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Malaxidinae is one of the most confusing groups in the Orchidaceae classification. Previous phylogenetic analyses have revealed that the relationships between the taxa in Malaxidinae have not yet been reliably established, using only a few plastome regions and nuclear ribosomal internal transcribed spacer (nrITS). In the present study, the complete plastomes of Oberonia integerrima and Crepidium purpureum were assembled using high-throughput sequencing. Combined with publicly available complete plastome data, this resulted in a dataset of 19 plastomes, including 17 species of Malaxidinae. The plastome features and phylogenetic relationships were compared and analyzed. The results showed the following: (1) Malaxidinae species plastomes possess the quadripartite structure of typical angiosperms, with sizes ranging from 142,996 to 158,787 bp and encoding from 125 to 133 genes. The ndh genes were lost or pseudogenized to varying degrees in six species. An unusual inversion was detected in the large single-copy region (LSC) of Oberonioides microtatantha. (2) Eight regions, including ycf1, matK, rps16, rpl32, ccsA-ndhD, clpP-psbB, trnFGAA-ndhJ, and trnSGCU-trnGUCC, were identified as mutational hotspots. (3) Based on complete plastomes, 68 protein-coding genes, and 51 intergenic regions, respectively, our phylogenetic analyses revealed the genus-level relationships in this subtribe with strong support. The Liparis was supported as non-monophyletic.
Collapse
Affiliation(s)
- Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Lun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-Y.Z.); (M.-H.L.); (S.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Lei W, Zhou P, Pei Z, Liu Y, Luo Y, Xiang X. Plastome Evolution and Comparative Analyses of a Recently Radiated Genus Vanda (Aeridinae, Orchidaceae). Int J Mol Sci 2024; 25:9538. [PMID: 39273486 PMCID: PMC11394697 DOI: 10.3390/ijms25179538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Vanda R.Br. is an epiphytic orchid genus with significant horticultural and ornamental value. Previous molecular studies expanded Vanda including some members from five other genera. However, the interspecific relationships of this recently radiated genus have remained unclear based on several DNA markers until now. In this study, the complete plastome has been used to infer the phylogenetic relationships of Vanda s.l. The five newly obtained plastomes ranged from 146,340 bp to 149,273 bp in length, with a GC content ranging from 36.5% to 36.7%. The five plastomes contained 74 protein-coding genes (CDSs), 38 tRNAs, and 8 rRNAs, and their ndh genes underwent loss or pseudogenization. Comparative plastome analyses of 13 Vanda species revealed high conservation in terms of genome size, structure, and gene order, except for a large inversion from trnGGCC to ycf3 in V. coerulea. Moreover, six CDSs and five non-CDSs were selected as candidate DNA barcodes. Our phylogenetic analyses demonstrated that Vanda s.l. is a monophyletic group with high supporting values based on five different datasets (complete plastome with one IR, 68 CDSs, LSC, five hypervariable non-CDSs, and six hypervariable CDSs), while the phylogenetic relationships among species were fully resolved based on the complete plastome with one IR dataset. Our results confirmed that the complete plastome has a great power in resolving the phylogenetic relationships of recently radiated lineages.
Collapse
Affiliation(s)
- Wanshun Lei
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Peng Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zelong Pei
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yizhen Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yan Luo
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666300, China
| | - Xiaoguo Xiang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Life Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Zhou P, Lei WS, Shi YK, Liu YZ, Luo Y, Li JH, Xiang XG. Plastome Evolution, Phylogenomics, and DNA Barcoding Investigation of Gastrochilus (Aeridinae, Orchidaceae), with a Focus on the Systematic Position of Haraella retrocalla. Int J Mol Sci 2024; 25:8500. [PMID: 39126069 PMCID: PMC11312641 DOI: 10.3390/ijms25158500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Gastrochilus is an orchid genus containing about 70 species in tropical and subtropical Asia with high morphological diversity. The phylogenetic relationships among this genus have not been fully resolved, and the plastome evolution has not been investigated either. In this study, five plastomes of Gastrochilus were newly reported, and sixteen plastomes of Gastrochilus were used to conduct comparative and phylogenetic analyses. Our results showed that the Gastrochilus plastomes ranged from 146,183 to 148,666 bp, with a GC content of 36.7-36.9%. There were 120 genes annotated, consisting of 74 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. No contraction and expansion of IR borders, gene rearrangements, or inversions were detected. Additionally, the repeat sequences and codon usage bias of Gastrochilus plastomes were highly conserved. Twenty hypervariable regions were selected as potential DNA barcodes. The phylogenetic relationships within Gastrochilus were well resolved based on the whole plastome, especially among main clades. Furthermore, both molecular and morphological data strongly supported Haraella retrocalla as a member of Gastrochilus (G. retrocallus).
Collapse
Affiliation(s)
- Peng Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, School of Life Sciences, Nanchang University, Nanchang 330031, China; (P.Z.); (W.-S.L.); (Y.-K.S.); (Y.-Z.L.)
| | - Wan-Shun Lei
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, School of Life Sciences, Nanchang University, Nanchang 330031, China; (P.Z.); (W.-S.L.); (Y.-K.S.); (Y.-Z.L.)
| | - Ying-Kang Shi
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, School of Life Sciences, Nanchang University, Nanchang 330031, China; (P.Z.); (W.-S.L.); (Y.-K.S.); (Y.-Z.L.)
| | - Yi-Zhen Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, School of Life Sciences, Nanchang University, Nanchang 330031, China; (P.Z.); (W.-S.L.); (Y.-K.S.); (Y.-Z.L.)
| | - Yan Luo
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666300, China;
| | - Ji-Hong Li
- Kadoorie Farm and Botanic Garden, Hong Kong Lam Kam Road, Tai Po, New Territories, Hong Kong 999077, China;
| | - Xiao-Guo Xiang
- Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, School of Life Sciences, Nanchang University, Nanchang 330031, China; (P.Z.); (W.-S.L.); (Y.-K.S.); (Y.-Z.L.)
| |
Collapse
|
5
|
Tao K, Tao L, Huang J, Duan H, Luo Y, Li L. Complete chloroplast genome structural characterization of two Aerides (Orchidaceae) species with a focus on phylogenetic position of Aerides flabellata. BMC Genomics 2024; 25:552. [PMID: 38825700 PMCID: PMC11145882 DOI: 10.1186/s12864-024-10458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND The disputed phylogenetic position of Aerides flabellata Rolfe ex Downie, due to morphological overlaps with related species, was investigated based on evidence of complete chloroplast (cp) genomes. The structural characterization of complete cp genomes of A. flabellata and A. rosea Lodd. ex Lindl. & Paxton were analyzed and compared with those of six related species in "Vanda-Aerides alliance" to provide genomic information on taxonomy and phylogeny. RESULTS The cp genomes of A. flabellata and A. rosea exhibited conserved quadripartite structures, 148,145 bp and 147,925 bp in length, with similar GC content (36.7 ~ 36.8%). Gene annotations revealed 110 single-copy genes, 18 duplicated in inverted regions, and ten with introns. Comparative analysis across related species confirmed stable sequence identity and higher variation in single-copy regions. However, there are notable differences in the IR regions between two Aerides Lour. species and the other six related species. The phylogenetic analysis based on CDS from complete cp genomes indicated that Aerides species except A. flabellata formed a monophyletic clade nested in the subtribe Aeridinae, being a sister group to Renanthera Lour., consistent with previous studies. Meanwhile, a separate clade consisted of A. flabellata and six Vanda R. Br. species was formed, as a sister taxon to Holcoglossum Schltr. CONCLUSIONS This research was the first report on the complete cp genomes of A. flabellata. The results provided insights into understanding of plastome evolution and phylogenetic relationships of Aerides. The phylogenetic analysis based on complete cp genomes showed that A. flabellata should be placed in Vanda rather than in Aerides.
Collapse
Affiliation(s)
- Kaifeng Tao
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Lei Tao
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Jialin Huang
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, Yunnan, 653100, China
| | - Hanning Duan
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Yan Luo
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.
| | - Lu Li
- College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| |
Collapse
|
6
|
Almerekova S, Yermagambetova M, Osmonali B, Vesselova P, Abugalieva S, Turuspekov Y. Characterization of the Plastid Genomes of Four Caroxylon Thunb. Species from Kazakhstan. PLANTS (BASEL, SWITZERLAND) 2024; 13:1332. [PMID: 38794403 PMCID: PMC11124919 DOI: 10.3390/plants13101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
The family Chenopodiaceae Vent. (Amaranthaceae s.l.) is known for its taxonomic complexity, comprising species of significant economic and ecological importance. Despite its significance, the availability of plastid genome data for this family remains limited. This study involved assembling and characterizing the complete plastid genomes of four Caroxylon Thunb. species within the tribe Salsoleae s.l., utilizing next-generation sequencing technology. We compared genome features, nucleotide diversity, and repeat sequences and conducted a phylogenetic analysis of ten Salsoleae s.l. species. The size of the plastid genome varied among four Caroxylon species, ranging from 150,777 bp (C. nitrarium) to 151,307 bp (C. orientale). Each studied plastid genome encoded 133 genes, including 114 unique genes. This set of genes includes 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Eight divergent regions (accD, atpF, matK, ndhF-ndhG, petB, rpl20-rpl22, rpoC2, and ycf3) were identified in ten Salsoleae s.l. plastid genomes, which could be potential DNA-barcoding markers. Additionally, 1106 repeat elements were detected, consisting of 814 simple sequence repeats, 92 tandem repeats, 88 forward repeats, 111 palindromic repeats, and one reverse repeat. The phylogenetic analysis provided robust support for the relationships within Caroxylon species. These data represent a valuable resource for future phylogenetic studies within the genus.
Collapse
Affiliation(s)
- Shyryn Almerekova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (S.A.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Moldir Yermagambetova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (S.A.)
| | - Bektemir Osmonali
- Institute of Botany and Phytointroduction, Almaty 050040, Kazakhstan; (B.O.); (P.V.)
| | - Polina Vesselova
- Institute of Botany and Phytointroduction, Almaty 050040, Kazakhstan; (B.O.); (P.V.)
| | - Saule Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (S.A.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yerlan Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (S.A.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
7
|
Yan R, Gu L, Qu L, Wang X, Hu G. New Insights into Phylogenetic Relationship of Hydrocotyle (Araliaceae) Based on Plastid Genomes. Int J Mol Sci 2023; 24:16629. [PMID: 38068952 PMCID: PMC10706649 DOI: 10.3390/ijms242316629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Hydrocotyle, belonging to the Hydrocotyloideae of Araliaceae, consists of 95 perennial and 35 annual species. Due to the lack of stable diagnostic morphological characteristics and high-resolution molecular markers, the phylogenetic relationships of Hydrocotyle need to be further investigated. In this study, we newly sequenced and assembled 13 whole plastid genomes of Hydrocotyle and performed comparative plastid genomic analyses with four previously published Hydrocotyle plastomes and phylogenomic analyses within Araliaceae. The plastid genomes of Hydrocotyle exhibited typical quadripartite structures with lengths from 152,659 bp to 153,669 bp, comprising a large single-copy (LSC) region (83,958-84,792 bp), a small single-copy (SSC) region (18,585-18,768 bp), and a pair of inverted repeats (IRs) (25,058-25,145 bp). Each plastome encoded 113 unique genes, containing 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Comparative analyses showed that the IR boundaries of Hydrocotyle plastomes were highly similar, and the coding and IR regions exhibited more conserved than non-coding and single-copy (SC) regions. A total of 2932 simple sequence repeats and 520 long sequence repeats were identified, with specificity in the number and distribution of repeat sequences. Six hypervariable regions were screened from the SC region, including four intergenic spacers (IGS) (ycf3-trnS, trnS-rps4, petA-psbJ, and ndhF-rpl32) and two coding genes (rpl16 and ycf1). Three protein-coding genes (atpE, rpl16, and ycf2) were subjected to positive selection only in a few species, implying that most protein-coding genes were relatively conserved during the plastid evolutionary process. Plastid phylogenomic analyses supported the treatment of Hydrocotyle from Apiaceae to Araliaceae, and topologies with a high resolution indicated that plastome data can be further used in the comprehensive phylogenetic research of Hydrocotyle. The diagnostic characteristics currently used in Hydrocotyle may not accurately reflect the phylogenetic relationships of this genus, and new taxonomic characteristics may need to be evaluated and selected in combination with more comprehensive molecular phylogenetic results.
Collapse
Affiliation(s)
- Rongrong Yan
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Li Gu
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Lu Qu
- Institute of Medicinal Plant Development Yunnan Branch, Chinese Academy of Medical Sciences, Jinghong 666100, China;
| | - Xiaoyu Wang
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Guoxiong Hu
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (R.Y.); (L.G.); (X.W.)
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|