1
|
Su G, Su L, Luo D, Yang X, Liu Z, Lin Q, An T, Weng C, Chen W, Zeng Z, Chen J. Cepharanthine inhibits African swine fever virus replication by suppressing AKT-associated pathways through disrupting Hsp90-Cdc37 complex. Int J Biol Macromol 2024; 282:137070. [PMID: 39486740 DOI: 10.1016/j.ijbiomac.2024.137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
African swine fever (ASF) represents one of the most economically important viral infectious diseases in the swine industry worldwide. Presently, there is an absence of commercially available therapeutic drugs and safe vaccines. Cepharanthine (CEP), one of the naturally occurring bisbenzylisoquinoline alkaloids, has been approved as a drug to treat various diseases such as leukopenia, bronchial asthma, and snake bites for 70 years in Japan. Most recently, CEP was reported to inhibit ASFV replication by suppressing endosomal/lysosomal function although the specific molecular mechanisms were not elucidated. In this study, we demonstrate for the first time that ASFV infection promotes co-chaperone Cdc37 expression and its binding to Hsp90, leading to increased AKT phosphorylation to benefit viral replication. Notably, CEP disrupts the Hsp90-Cdc37 complex, subsequently decreasing p-AKT and inhibiting ASFV replication. Furthermore, our investigation reveals that enhanced AKT phosphorylation amplifies glycolysis, resulting in increased lactate production, while it upregulates the NF-κB signaling pathway, resulting in increased expression of IL-1β and other inflammatory cytokines. Elevated lactate enhances ASFV replication, and IL-1β acts synergistically on the proviral effect of lactate. CEP reduces ASFV replication by disrupting the formation of the Hsp90-Cdc37 complex and suppressing its downstream AKT/glycolysis axis and AKT/NF-κB pathway, leading to reduced lactate and IL-1β production. Our findings suggest that CEP could serve as a promising ASFV inhibitor, and the Hsp90-Cdc37 complex and glycolysis represent novel antiviral targets against ASFV infections, offering novel avenues for further exploration in antiviral therapeutic strategies. As the in vivo environment is largely complicated from ex vivo PAMs, anti-ASFV efficacy evaluation of CEP in pigs is the most imperative work in the future.
Collapse
Affiliation(s)
- Guanming Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Laboratory Animal Center, Guangdong Medical University, Dongguan 523808, China
| | - Lizhan Su
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ding Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqun Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zexin Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qisheng Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Zeng P, Huang H, Li D. Combining bioinformatics, network pharmacology, and artificial intelligence to predict the mechanism of resveratrol in the treatment of rheumatoid arthritis. Heliyon 2024; 10:e37371. [PMID: 39309832 PMCID: PMC11416256 DOI: 10.1016/j.heliyon.2024.e37371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic autoimmune disorder that causes joint inflammation and destruction, resulting in significant physical and economic burdens. Finding effective and targeted therapy for RA remains a top priority. Resveratrol is a potential candidate with anti-inflammatory and immunomodulatory properties for RA treatment. This study aims to determine the therapeutic targets and signaling pathways of resveratrol in the treatment of RA. Methods The GSE205962 dataset downloaded from The Gene Expression Omnibus (GEO) database was used to obtain the differentially expressed genes (DEGs) in blood samples from the patients and the healthy. PharmMapper database and Cytoscape (v3.9.1) were applied to construct the resveratrol pharmacophore target network. Gene functional enrichment analysis, including the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, was based on the BiNGo plug-in of Cytoscape and David's online tool. The intersection of the target genes of resveratrol and the DEGs were considered potential therapeutic genes (PT-genes). The Protein-Protein Interaction (PPI) network of PT-genes was constructed using the STRING tool, and the key therapeutic genes (KT-genes) were determined using the cytoHubba plug-in based on the Maximal Clique Centrality (MCC) algorithms. Molecular docking validation of resveratrol and therapeutic targets was performed based on the protein structure of KT-genes predicted by AlphaFold. Results A total of 2202 DEGs and 47PT-genes were identified. GO analysis showed that the three groups of genes, the DEGs, the resveratrol target genes, and the PT-genes, have similar results for the top-five gene functional enrichment. PT-genes were closely related to the pathways of metabolic pathways, pathways in cancer, proteoglycans in cancer, insulin signaling pathway, and chemokine signaling pathway. The common pathway enriched by KEGG for the DEGs, and the resveratrol target genes was up to 36 %. The nine KT-genes were ABL1, ANXA5, CASP3, HSP90AA1, LCK, MAP2K1, MAPK1, PIK3R1, and RAC1, and the lowest free energy indicating the resveratrol/protein affinity were -8.4, -7.4, -6.4, -6.7, -8.0, -7.9, -7.4, -6.7, and -7.9, respectively. Conclusion Nine KT-genes were identified and validated as the most potential therapeutic targets in the treatment of RA with resveratrol, which provide new insights into therapeutic mechanisms and may improve the efficiency of drug development.
Collapse
Affiliation(s)
- Piaoqi Zeng
- Department of Rheumatology, Ganzhou People's Hospital, Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Haohan Huang
- Department of Orthopaedics, Gongli Hospital of Shanghai Pudong New Area, 219 Miaopu Rd, Shanghai 200011, China
| | - Dongsheng Li
- Department of Rheumatology, Ganzhou People's Hospital, Hongqi Avenue, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| |
Collapse
|
3
|
Huang W, Liu X, Li X, Zhang R, Chen G, Mao X, Xu S, Liu C. Integrating network pharmacology, molecular docking and non-targeted serum metabolomics to illustrate pharmacodynamic ingredients and pharmacologic mechanism of Haizao Yuhu Decoction in treating hyperthyroidism. Front Endocrinol (Lausanne) 2024; 15:1438821. [PMID: 39387049 PMCID: PMC11462413 DOI: 10.3389/fendo.2024.1438821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Objective To explore the pharmacodynamic ingredients and pharmacologic mechanism of Haizao Yuhu Decoction (HYD) in treating hyperthyroidism via an analysis integrating network pharmacology, molecular docking, and non-targeted serum metabolomics. Methods Therapeutic targets of hyperthyroidism were searched through multi-array analyses in the Gene Expression Omnibus (GEO) database. Hub genes were subjected to the construction of a protein-protein interaction (PPI) network, and GO and KEGG enrichment analyses. Targets of active pharmaceutical ingredients (APIs) in HYD and those of hyperthyroidism were intersected to yield hub genes, followed by validations via molecular docking and non-targeted serum metabolomics. Results 112 hub genes were identified by intersecting APIs of HYD and therapeutic targets of hyperthyroidism. Using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) in both negative and positive ion polarity modes, 279 compounds of HYD absorbed in the plasma were fingerprinted. Through summarizing data yielded from network pharmacology and non-targeted serum metabolomics, 214 common targets were identified from compounds of HYD absorbed in the plasma and therapeutic targets of hyperthyroidism, including PTPN11, PIK3CD, EGFR, HRAS, PIK3CA, AKT1, SRC, PIK3CB, and PIK3R1. They were mainly enriched in the biological processes of positive regulation of gene expression, positive regulation of MAPK cascade, signal transduction, protein phosphorylation, negative regulation of apoptotic process, positive regulation of protein kinase B signaling and positive regulation of MAP kinase activity; and molecular functions of identical protein binding, protein serine/threonine/tyrosine kinase activity, protein kinase activity, RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding and protein binding. A total of 185 signaling pathways enriched in the 214 common targets were associated with cell proliferation and angiogenesis. Conclusion HYD exerts a pharmacological effect on hyperthyroidism via inhibiting pathological angiogenesis in the thyroid and rebalancing immunity.
Collapse
Affiliation(s)
- Wenbin Huang
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoju Liu
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingjia Li
- Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Treatment of Yingbing (Thyroid Disease) of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Ruixiang Zhang
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guofang Chen
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Treatment of Yingbing (Thyroid Disease) of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xiaodong Mao
- Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Treatment of Yingbing (Thyroid Disease) of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shuhang Xu
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Liu
- Endocrine and Diabetes Center, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Treatment of Yingbing (Thyroid Disease) of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Asiri A, Al Qarni A, Bakillah A. The Interlinking Metabolic Association between Type 2 Diabetes Mellitus and Cancer: Molecular Mechanisms and Therapeutic Insights. Diagnostics (Basel) 2024; 14:2132. [PMID: 39410536 PMCID: PMC11475808 DOI: 10.3390/diagnostics14192132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancer share common risk factors including obesity, inflammation, hyperglycemia, and hyperinsulinemia. High insulin levels activate the PI3K/Akt/mTOR signaling pathway promoting cancer cell growth, survival, proliferation, metastasis, and anti-apoptosis. The inhibition of the PI3K/Akt/mTOR signaling pathway for cancer remains a promising therapy; however, drug resistance poses a major problem in clinical settings resulting in limited efficacy of agents; thus, combination treatments with therapeutic inhibitors may solve the resistance to such agents. Understanding the metabolic link between diabetes and cancer can assist in improving the therapeutic strategies used for the management of cancer patients with diabetes and vice versa. This review provides an overview of shared molecular mechanisms between diabetes and cancer as well as discusses established and emerging therapeutic anti-cancer agents targeting the PI3K/Akt/mTOR pathway in cancer management.
Collapse
Affiliation(s)
- Abutaleb Asiri
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ali Al Qarni
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ahmed Bakillah
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| |
Collapse
|
5
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Aisagbonhi O, Ghlichloo I, Hong DS, Roma A, Fadare O, Eskander R, Saenz C, Fisch KM, Song W. Comprehensive next-generation sequencing identifies novel putative pathogenic or likely pathogenic germline variants in patients with concurrent tubo-ovarian and endometrial serous and endometrioid carcinomas or precursors. Gynecol Oncol 2024; 187:241-248. [PMID: 38833993 DOI: 10.1016/j.ygyno.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Endometrial serous carcinoma (ESC) and tubo-ovarian high-grade serous carcinoma (HGSC) are characterized by late-stage presentation and high mortality. Current guidelines for prevention recommend risk-reducing salpingo-oophorectomy (RRSO) in patients with hereditary mutations in cancer susceptibility genes. However, HGSC displays extensive genetic heterogeneity with alterations in 168 genes identified in TCGA study, but current germline testing panels are often limited to the handful of recurrently mutated genes, leaving families with rare hereditary gene mutations potentially at-risk. OBJECTIVE To determine if there are rare germline mutations that may aid in early identification of more patients at-risk for ESC and/or HGSC by evaluating patients with concurrent ESC, HGSC or precursor lesions, and endometrial atypical hyperplasia (CAH) or low-grade endometrial endometrioid adenocarcinoma (LGEEA). METHODS We performed targeted next-generation sequencing using TSO 500, a 523 gene panel, on formalin-fixed paraffin-embedded tumor and matched benign non-tumor tissue blocks from 5 patients with concurrent ESC, HGSC or precursor lesions, and CAH or LGEEA. RESULTS We identified germline pathogenic, likely pathogenic or uncertain significance variants in cancer susceptibility genes in 4 of 5 patients - affected genes included GLI1, PIK3R1, FOXP1, FANCD2, INPP4B and H3F3C. Notably, none of these genes were included in the commercially available germline testing panels initially used to evaluate the patients at the time of their diagnoses. CONCLUSION Comprehensive germline testing of patients with concurrent LGEEA or CAH and ESC, HGSC or precursor lesions may aid in early identification of relatives at-risk for cancer who may be candidates for RRSO with hysterectomy.
Collapse
Affiliation(s)
- Omonigho Aisagbonhi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| | - Ida Ghlichloo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Duncan S Hong
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andres Roma
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ramez Eskander
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Cheryl Saenz
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - Wei Song
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Mostafa SM, Wang L, Tian B, Graber J, Moore C. Transcriptomic analysis reveals regulation of adipogenesis via long non-coding RNA, alternative splicing, and alternative polyadenylation. Sci Rep 2024; 14:16964. [PMID: 39043790 PMCID: PMC11266407 DOI: 10.1038/s41598-024-67648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Obesity is characterized by dysregulated adipogenesis that leads to increased number and/or size of adipocytes. Understanding the molecular mechanisms governing adipogenesis is therefore key to designing therapeutic interventions against obesity. In our study, we analyzed 3'-end sequencing data that we generated from human preadipocytes and adipocytes, as well as previously published RNA-seq datasets, to elucidate mechanisms of regulation via long non-coding RNA (lncRNA), alternative splicing (AS) and alternative polyadenylation (APA). We discovered lncRNAs that have not been previously characterized but may be key regulators of white adipogenesis. We also detected 100 AS events and, using motif enrichment analysis, identified RNA binding proteins (RBPs) that could mediate exon skipping-the most prevalent AS event. In addition, we show that usage of alternative poly(A) sites in introns or 3'-UTRs of key adipogenesis genes leads to isoform diversity, which can have significant biological consequences on differentiation efficiency. We also identified RBPs that may modulate APA and defined how 3'-UTR APA can regulate gene expression through gain or loss of specific microRNA binding sites. Taken together, our bioinformatics-based analysis reveals potential therapeutic avenues for obesity through manipulation of lncRNA levels and the profile of mRNA isoforms via alternative splicing and polyadenylation.
Collapse
Affiliation(s)
- Salwa Mohd Mostafa
- Graduate School of Biomedical Sciences and Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Luyang Wang
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Bin Tian
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Joel Graber
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04609, USA
| | - Claire Moore
- Graduate School of Biomedical Sciences and Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
8
|
HuangFu R, Li H, Luo Y, He F, Huan C, Ahmed Z, Zhang B, Lei C, Yi K. Illuminating Genetic Diversity and Selection Signatures in Matou Goats through Whole-Genome Sequencing Analysis. Genes (Basel) 2024; 15:909. [PMID: 39062688 PMCID: PMC11275394 DOI: 10.3390/genes15070909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Matou goats, native to Hunan and Hubei provinces in China, are renowned for their exceptional meat and skin quality. However, a comprehensive whole-genome-based exploration of the genetic architecture of this breed is scant in the literature. (2) Methods: To address this substantial gap, we used whole-genome sequences of 20 Matou goats and compared them with published genomic data of 133 goats of different breeds across China. This comprehensive investigation sought to assess genetic diversity, population structure, and the presence of genomic selection signals. (3) Results: The whole genome of Matou goat populations yielded a substantial catalog of over 19 million single nucleotide polymorphisms (SNPs), primarily distributed within intergenic and intron regions. The phylogenetic tree analysis revealed distinct clades corresponding to each goat population within the dataset. Notably, this analysis positioned Matou goats in a closer genetic affinity with Guizhou White goats, compared to other recognized goat breeds. This observation was corroborated by principal component analysis (PCA) and admixture analysis. Remarkably, Matou goats exhibited diminished genetic diversity and a notable degree of inbreeding, signifying a reduced effective population size. Moreover, the study employed five selective sweep detection methods (including PI, CLR, PI-Ratio, Fst, and XP-EHH) to screen top signal genes associated with critical biological functions, encompassing cardiomyocytes, immunity, coat color, and meat quality. (4) Conclusions: In conclusion, this study significantly advances our understanding of the current genetic landscape and evolutionary dynamics of Matou goats. These findings underscore the importance of concerted efforts in resource conservation and genetic enhancement for this invaluable breed.
Collapse
Affiliation(s)
- Ruiyao HuangFu
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712000, China;
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Yang Luo
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Fang He
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Cheng Huan
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712000, China;
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| |
Collapse
|
9
|
Xu K, Zhang L, Wang T, Yu T, Zhao X, Zhang Y. Transcriptome sequencing and bioinformatics analysis of gastrocnemius muscle in type 2 diabetes mellitus rats. BMC Musculoskelet Disord 2024; 25:457. [PMID: 38851698 PMCID: PMC11161923 DOI: 10.1186/s12891-024-07568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is one of the high risk factors for sarcopenia. However, the pathogenesis of diabetic sarcopenia has not been fully elucidated. This study obtained transcriptome profiles of gastrocnemius muscle in normal and T2DM rats based on high-throughput sequencing technology, which may provide new ideas for exploring the pathogenesis of diabetic sarcopenia. METHODS Twelve adult male Sprague-Dawley rats were randomly divided into Control group and T2DM group, and gastrocnemius muscle tissue was retained for transcriptome sequencing and real-time quantitative polymerase chain reaction (qRT-PCR) 6 months later. Screening differentially expressed genes (DEGs), Cluster analysis, gene ontology (GO) functional annotation analysis and Kyoto Encyclopedia of Genes and Gnomes (KEGG) functional annotation and enrichment analysis were performed for DEGs. Six DEGs related to apoptosis were selected for qTR-PCR verification. RESULTS Transcriptomic analysis showed that there were 1016 DEGs between the gastrocnemius muscle of T2DM and normal rats, among which 665 DEGs were up-regulated and 351 DEGs were down-regulated. GO analysis showed that the extracellular matrix organization was the most enriched in biological processes, with 26 DEGs. The extracellular matrix with 35 DEGs was the most abundant cellular component. The extracellular matrix structural constituent, with 26 DEGs, was the most enriched in molecular functions. The highest number of DEGs enriched in biological processes, cellular components and molecular functions were positive regulation of transcription by RNA polymerase II, nucleus and metal ion binding, respectively. There were 78, 230 and 89 DEGs respectively. KEGG pathway enrichment analysis showed that ECM-receptor interaction, PI3K-Akt signaling pathway and TGF-β signaling pathway(p < 0.001) had higher enrichment degree and number of DEGs. qRT-PCR results showed that the fold change of Map3k14, Atf4, Pik3r1, Il3ra, Gadd45b and Bid were 1.95, 3.25, 2.97, 2.38, 0.43 and 3.6, respectively. The fold change of transcriptome sequencing were 3.45, 2.21, 2.59, 5.39, 0.49 and 2.78, respectively. The transcriptional trends obtained by qRT-PCR were consistent with those obtained by transcriptome sequencing. CONCLUSIONS Transcriptomic analysis was used to obtain the "gene profiles" of gastrocnemius muscle of T2DM and normal rats. qRT-PCR verification showed that the genes related to apoptosis were differentially expressed. These DEGs and enrichment pathways may provide new ideas for exploring the pathogenesis of diabetic sarcopenia.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Liang Zhang
- Department of Abdominal ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Tianrui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, 266000, China
| | - Xia Zhao
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Yingze Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
10
|
Lei Y, Zhang R, Cai F. Role of MARK2 in the nervous system and cancer. Cancer Gene Ther 2024; 31:497-506. [PMID: 38302729 DOI: 10.1038/s41417-024-00737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Microtubule-Affinity Regulating Kinase 2 (MARK2), a member of the serine/threonine protein kinase family, phosphorylates microtubule-associated proteins, playing a crucial role in cancer and neurodegenerative diseases. This kinase regulates multiple signaling pathways, including the WNT, PI3K/AKT/mTOR (PAM), and NF-κB pathways, potentially linking it to cancer and the nervous system. As a crucial regulator of the PI3K/AKT/mTOR pathway, the loss of MARK2 inhibits the growth and metastasis of cancer cells. MARK2 is involved in the excessive phosphorylation of tau, thus influencing neurodegeneration. Therefore, MARK2 emerges as a promising drug target for the treatment of cancer and neurodegenerative diseases. Despite its significance, the development of inhibitors for MARK2 remains limited. In this review, we aim to present detailed information on the structural features of MARK2 and its role in various signaling pathways associated with cancer and neurodegenerative diseases. Additionally, we further characterize the therapeutic potential of MARK2 in neurodegenerative diseases and cancer, and hope to facilitate basic research on MARK2 and the development of inhibitors targeting MARK2.
Collapse
Affiliation(s)
- Yining Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
11
|
Zhang Z, Liu X, Zhang S, Song Z, Lu K, Yang W. A review and analysis of key biomarkers in Alzheimer's disease. Front Neurosci 2024; 18:1358998. [PMID: 38445255 PMCID: PMC10912539 DOI: 10.3389/fnins.2024.1358998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects over 50 million elderly individuals worldwide. Although the pathogenesis of AD is not fully understood, based on current research, researchers are able to identify potential biomarker genes and proteins that may serve as effective targets against AD. This article aims to present a comprehensive overview of recent advances in AD biomarker identification, with highlights on the use of various algorithms, the exploration of relevant biological processes, and the investigation of shared biomarkers with co-occurring diseases. Additionally, this article includes a statistical analysis of key genes reported in the research literature, and identifies the intersection with AD-related gene sets from databases such as AlzGen, GeneCard, and DisGeNet. For these gene sets, besides enrichment analysis, protein-protein interaction (PPI) networks utilized to identify central genes among the overlapping genes. Enrichment analysis, protein interaction network analysis, and tissue-specific connectedness analysis based on GTEx database performed on multiple groups of overlapping genes. Our work has laid the foundation for a better understanding of the molecular mechanisms of AD and more accurate identification of key AD markers.
Collapse
Affiliation(s)
- Zhihao Zhang
- School of Computer Science and Technology, Xinjiang University, Ürümqi, China
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China
| | - Xiangtao Liu
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China
| | - Suixia Zhang
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Zhixin Song
- College of Medical Engineering and Technology, Xinjiang Medical University, Ürümqi, China
| | - Ke Lu
- School of Computer Science and Technology, Xinjiang University, Ürümqi, China
| | - Wenzhong Yang
- School of Computer Science and Technology, Xinjiang University, Ürümqi, China
| |
Collapse
|