1
|
Zhang R, Yang Y, Li X, Jiao C, Lou M, Mi W, Mao-Ying QL, Chu Y, Wang Y. Exploring shared targets in cancer immunotherapy and cancer-induced bone pain: Insights from preclinical studies. Cancer Lett 2024; 611:217399. [PMID: 39689823 DOI: 10.1016/j.canlet.2024.217399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Cancer casts a profound shadow on global health, with pain emerging as one of the dominant and severe complications, particularly in advanced stages. The effective management of cancer-induced pain remains an unmet need. Emerging preclinical evidence suggests that targets related to tumor immunotherapy may also modulate cancer-related pain pathways, thus offering a promising therapeutic direction. This review, focusing on more than ten molecular targets that link cancer immunotherapy and cancer-induced bone pain, underscores their potential to tackle both aspects in the context of comprehensive cancer care. Emphasizing factors such as types of cancer, drug administration methods, and sex differences in the analgesic efficacy of immunotherapeutic agents provides neuroscientific insights into personalized pain management for patients with cancer.
Collapse
Affiliation(s)
- Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Chunmeng Jiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengping Lou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Sun J, Lei D. CD200-CD200R Pathway: A Regulator of Microglial Polarization in Postoperative Cognitive Dysfunction. J Inflamm Res 2024; 17:8421-8427. [PMID: 39530002 PMCID: PMC11552426 DOI: 10.2147/jir.s489895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Microglial polarization refers to the ability of microglia to exhibit different functional states under various conditions. As the resident immune cells of the brain, changes in the functional state of microglia play a crucial role in the progression of postoperative cognitive dysfunction. Recent studies have indicated that CD200-CD200R signaling is associated with microglial polarization. This review focuses on the latest advancements regarding whether CD200-CD200R signaling can regulate microglial polarization and thereby influence postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Jie Sun
- Department of Anesthesiology, Zhongda Hospital Southeast University (Jiangbei), Nanjing, Jiangsu, 210044, People’s Republic of China
- Department of Anesthesiology, Zhongda Hospital Southeast University, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Daoyun Lei
- Department of Anesthesiology, Zhongda Hospital Southeast University (Jiangbei), Nanjing, Jiangsu, 210044, People’s Republic of China
- Department of Anesthesiology, Zhongda Hospital Southeast University, Nanjing, Jiangsu, 210009, People’s Republic of China
| |
Collapse
|
3
|
Wang X, Wang H, Li Y, Sun Z, Liu J, Sun C, Cao X. Engineering macrophage membrane-camouflaged nanoplatforms with enhanced macrophage function for mediating sonodynamic therapy of ovarian cancer. NANOSCALE 2024; 16:19048-19061. [PMID: 39310965 DOI: 10.1039/d4nr01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Cancer immunotherapy has demonstrated remarkable efficacy in the treatment of cancer, and it has been successfully applied in the treatment of various solid tumors. However, the response rates to immunotherapy in patients with ovarian cancer remain modest because of the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) represent the predominant myeloid cell population within the TME, which adopt the protumorigenic M2 phenotype and are blinded by the "don't eat me" signals from tumor cells. These characteristics of TAMs result in insufficient phagocytic activation. In this study, we constructed a SIM@TR-NP-mediated combination therapy of sonodynamic and immunotherapy. SIM@TR-NPs were modified by engineered macrophage membranes with overexpressed sialic acid-binding Ig-like lectin 10 (Siglec-10), and were internally loaded with sonosensitizer 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) and immune adjuvant resiquimod. SIM@TR-NPs can block "don't eat me" signals to enhance macrophage phagocytosis and trigger the polarization of TAMs toward the M1 phenotype, thereby improving the immunosuppressive TME. Simultaneously, upon ultrasound irradiation, SIM@TR-NP-mediated sonodynamic therapy (SDT) triggered immunogenic cell death in tumor cells, in combination with TAM-based immunotherapy, transforming the "immune cold tumor" into an "immune hot tumor". SIM@TR-NP-mediated sonodynamic immunotherapy exhibited potent antitumor efficacy in ovarian cancer and exhibited substantial potential for improving the immunosuppressive TME. This study presents an emerging therapeutic regimen for ovarian cancer that synergizes TAM-based antitumor immunotherapy and SDT.
Collapse
Affiliation(s)
- Xiaofei Wang
- Yantai Yuhuangding hospital, Shandong University, Yantai, 264000, P.R. China.
| | - Hongling Wang
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Yansheng Li
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Chengming Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, P.R. China.
| | - Xiaoli Cao
- Yantai Yuhuangding hospital, Shandong University, Yantai, 264000, P.R. China.
| |
Collapse
|
4
|
Chen J, Wu T, Yang Y. Sialylation-associated long non-coding RNA signature predicts the prognosis, tumor microenvironment, and immunotherapy and chemotherapy options in uterine corpus endometrial carcinoma. Cancer Cell Int 2024; 24:314. [PMID: 39261877 PMCID: PMC11391619 DOI: 10.1186/s12935-024-03486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Sialylation in uterine corpus endometrial carcinoma (UCEC) differs significantly from apoptotic and ferroptosis pathways. It plays a crucial role in cancer progression and immune response modulation. Exploring how sialylation affects tumor behavior and its link with long non-coding RNAs (lncRNAs) may provide new insights into UCEC prognosis and treatment. METHODS We obtained RNA transcriptome, clinical, and mutation data of UCEC samples from the TCGA database. Our approach involved developing a risk model based on the co-expression patterns of sialylation genes and lncRNAs. Prognostic lncRNAs were identified through Cox regression and further refined using LASSO analysis. To understand the biological functions and pathways of model-associated differentially expressed genes (MADEGs), we conducted enrichment analyses. We also assessed the immune infiltration status of MADEGs using eight different algorithms, which helped in evaluating the potential for immunotherapy. Additionally, we validated the expression of these lncRNAs in UCEC using cell lines and clinical samples. RESULTS We developed a UCEC risk model using five sialylation-related lncRNAs (AC004884.2, AC026202.2, LINC01579, LINC00942, SLC16A1-AS1). This model, confirmed through Cox analysis and clinical evaluation, effectively predicted patient outcomes. Survival data analysis across entire cohort, as well as within training and test groups, indicated better survival in low-risk UCEC patients. Enrichment analyses linked MADEGs to sialylation functions and cancer pathways. High-risk patients showed increased responsiveness to immune checkpoint inhibitors (ICIs), as indicated by immunological assessments. Subgroup C2 patients showed superior outcomes and a robust response to immunotherapy and chemotherapy. Notably, LINC01579, LINC00942, and SLC16A1-AS1 were significantly overexpressed in UCEC clinical tumor samples as well as in Ishikawa and HEC-1-B cell lines, compared to the normal groups. CONCLUSIONS This lncRNA signature associated with sialylation could guide prognosis, enhance the understanding of molecular mechanisms, and inform treatment strategies in UCEC. It highlights the potential for the use of ICIs and chemotherapy.
Collapse
Affiliation(s)
- Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Wu
- Department of Cardiovasology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongwen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, P. R. China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Sun J, Zhang X, Wu F, Zhu B, Xie H. Elevated ADH5 expression suggested better prognosis in kidney renal clear cell carcinoma (KIRC) and related to immunity through single-cell and bulk RNA-sequencing. BMC Urol 2024; 24:84. [PMID: 38600527 PMCID: PMC11007970 DOI: 10.1186/s12894-024-01478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Despite the rapid advances in modern medical technology, kidney renal clear cell carcinoma (KIRC) remains a challenging clinical problem in urology. Researchers urgently search for useful markers to break through the therapeutic conundrum due to its high lethality. Therefore, the study explores the value of ADH5 on overall survival (OS) and the immunology of KIRC. METHODS The gene expression matrix and clinical information on ADH5 in the TCGA database were validated using external databases and qRT-PCR. To confirm the correlation between ADH5 and KIRC prognosis, univariate/multivariate Cox regression analysis was used. We also explored the signaling pathways associated with ADH5 in KIRC and investigated its association with immunity. RESULTS The mRNA and protein levels showed an apparent downregulation of ADH5 in KIRC. Correlation analysis revealed that ADH5 was directly related to histological grade, clinical stage, and TMN stage (p < 0.05). Univariate and multivariate Cox regression analysis identified ADH5 as an independent factor affecting the prognosis of KIRC. Enrichment analysis looked into five ADH5-related signaling pathways. The results showed no correlation between ADH5 and TMB, TNB, and MSI. From an immunological perspective, ADH5 was found to be associated with the tumor microenvironment, immune cell infiltration, and immune checkpoints. Lower ADH5 expression was associated with greater responsiveness to immunotherapy. Single-cell sequencing revealed that ADH5 is highly expressed in immune cells. CONCLUSION ADH5 could be a promising prognostic biomarker and a potential therapeutic target for KIRC. Besides, it was found that KIRC patients with low ADH5 expression were more sensitive to immunotherapy.
Collapse
Affiliation(s)
- Junhao Sun
- Department of Urology, Affiliated Hospital of Nantong University, No.20 West Temple Road, Nantong, 226001, Jiangsu Province, China
| | - Xinyu Zhang
- Department of Urology, Affiliated Hospital of Nantong University, No.20 West Temple Road, Nantong, 226001, Jiangsu Province, China
| | - Fan Wu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), No. 881 Yonghe Road, Nantong, 226001, Jiangsu Province, China.
| | - Huyang Xie
- Department of Urology, Affiliated Hospital of Nantong University, No.20 West Temple Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
7
|
Huang S, Zhang X, Wei Y, Xiao Y. Checkpoint CD24 function on tumor and immunotherapy. Front Immunol 2024; 15:1367959. [PMID: 38487533 PMCID: PMC10937401 DOI: 10.3389/fimmu.2024.1367959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
CD24 is a protein found on the surface of cells that plays a crucial role in the proliferation, invasion, and spread of cancer cells. It adheres to cell membranes through glycosylphosphatidylinositol (GPI) and is associated with the prognosis and survival rate of cancer patients. CD24 interacts with the inhibitory receptor Siglec-10 that is present on immune cells like natural killer cells and macrophages, leading to the inhibition of natural killer cell cytotoxicity and macrophage-mediated phagocytosis. This interaction helps tumor cells escape immune detection and attack. Although the use of CD24 as a immune checkpoint receptor target for cancer immunotherapy is still in its early stages, clinical trials have shown promising results. Monoclonal antibodies targeting CD24 have been found to be well-tolerated and safe. Other preclinical studies are exploring the use of chimeric antigen receptor (CAR) T cells, antibody-drug conjugates, and gene therapy to target CD24 and enhance the immune response against tumors. In summary, this review focuses on the role of CD24 in the immune system and provides evidence for CD24 as a promising immune checkpoint for cancer immunotherapy.
Collapse
Affiliation(s)
- Shiming Huang
- Department of Radiology, First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- Graduate School, Chinese PLA Medical School, Beijing, China
- Department of Nuclear Medicine, Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, China
| | - Xiaobo Zhang
- Department of Radiology, First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yingtian Wei
- Department of Radiology, First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Yueyong Xiao
- Department of Radiology, First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
8
|
Gorczynski R. Translation of Data from Animal Models of Cancer to Immunotherapy of Breast Cancer and Chronic Lymphocytic Leukemia. Genes (Basel) 2024; 15:292. [PMID: 38540350 PMCID: PMC10970502 DOI: 10.3390/genes15030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
The field of clinical oncology has been revolutionized over the past decade with the introduction of many new immunotherapies the existence of which have depended to a large extent on experimentation with both in vitro analysis and the use of various animal models, including gene-modified mice. The discussion below will review my own laboratory's studies, along with those of others in the field, on cancer immunotherapy. Our own studies have predominantly dwelt on two models of malignancy, namely a solid tumor model (breast cancer) and lymphoma. The data from our own laboratory, and that of other scientists, highlights the novel information so obtained, and the evidence that application of such information has already had an impact on immunotherapy of human oncologic diseases.
Collapse
Affiliation(s)
- Reginald Gorczynski
- Institute of Medical Science, Department of Immunology and Surgery, University of Toronto, C/O 429 Drewry Avenue, Toronto, ON M2R 2K6, Canada
| |
Collapse
|