1
|
Sun Q, Wang Y, Ren H, Hou S, Niu K, Wang L, Liu S, Ye J, Cui C, Qi X. Engineered Hollow Nanocomplex Combining Photothermal and Antioxidant Strategies for Targeted Tregs Depletion and Potent Immune Activation in Tumor Immunotherapy. Adv Healthc Mater 2025:e2405124. [PMID: 40109122 DOI: 10.1002/adhm.202405124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/06/2025] [Indexed: 03/22/2025]
Abstract
In the tumor immunosuppressive microenvironment (TIME), regulatory T cells (Tregs) critically suppress anticancer immunity, characterized by high expression of glucocorticoid-induced TNF receptor (GITR) expression and sensitivity to reactive oxygen species (ROS). This study develops a near-infrared (NIR)-responsive hollow nanocomplex (HPDA-OPC/DTA-1) using hollow polydopamine nanoparticles (HPDA), endowed with thermogenic and antioxidative properties, specifically targeting Tregs to activate antitumor immunity. The GITR agonist DTA-1, combined with the antioxidant oligomeric proanthocyanidins (OPC) to deplete Tregs. However, Tregs depletion alone may not sufficiently trigger robust immune responses. The HPDA nanocarrier enhances thermogenic and antioxidative capacities, supporting photothermal immunotherapy. The HPDA-OPC/DTA-1 demonstrates NIR responsiveness for both photothermal therapy (PTT) and OPC release, while facilitating Tregs depletion via DTA-1 and reducing ROS levels, thereby reviving antitumor immunity. Notably, intratumoral CD4+CD25+FOXP3+ Tregs exhibited a 4.08-fold reduction alongside a 49.11-fold increase in CD8+ T cells/Tregs relative to controls. Enhanced dendritic cells (DCs) maturation and immunogenic cell death (ICD) induction further demonstrate that HPDA-OPC/DTA-1 alleviates immunosuppression and activates antitumor immunity. Ultimately, the observed tumor inhibitory effect (tumor volume: 6.75-fold versus the control) and an over 80% survival rate highlight the therapeutic potential of combining Tregs targeting, antioxidant strategy, and photothermal immunotherapy for effective cancer treatment.
Collapse
Affiliation(s)
- Qi Sun
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Yuyan Wang
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Hetian Ren
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Shiyuan Hou
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Kaiyi Niu
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Liu Wang
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Siyu Liu
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Jingyi Ye
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Chunying Cui
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
2
|
Zhang Y, Wang L, Zeng J, Shen W. Research advances in polyphenols from Chinese herbal medicine for the prevention and treatment of chronic obstructive pulmonary disease: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03945-y. [PMID: 40035820 DOI: 10.1007/s00210-025-03945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a global health problem due to its high death and morbidity worldwide, which is characterized by an incompletely reversible limitation in airflow that is not fully reversible. Unfortunately, Western medical treatments are unable to reverse the progressive decline in lung function. Importantly, polyphenolic compounds isolated from Chinese herbal medicine exhibited therapeutic/interventional effects on COPD in preclinical studies. This review systematically analyzed the pathogenesis of COPD, such as inflammation, oxidative stress, protease/antiprotease imbalance, aging, cell death, and dysbiosis of gut microbiota. Moreover, this review summarized the regulatory mechanisms of natural polyphenolic compounds for the treatment of COPD. Several studies have demonstrated that natural polyphenolic compounds have therapeutic effects on COPD by regulating various biological processes, such as anti-inflammatory, reduction of oxidative damage, anti-cell death, and inhibition of airway hyperglycemia. Mechanistically, this review found that the promising effects of natural polyphenolic compounds on COPD were mainly achieved through modulating the NF-κB and MAPK inflammatory pathways, the Nrf2 oxidative stress pathway, and the SIRT1/PGC-1α lung injury pathway. Furthermore, this review analyzed the efficacy and safety of natural polyphenolic compounds for the treatment of COPD in clinical trials, and discussed their challenges and future development directions. In conclusion, this review combined the latest literature to illustrate the various pathogenesis and interrelationships of COPD in the form of graphs, texts, and tables, and sorted out the functional role and mechanisms of natural polyphenols in treating COPD, with a view to providing new ideas and plans for the in-depth research on COPD and the systemic treatment of COPD with Chinese herbal medicine.
Collapse
Affiliation(s)
- Yang Zhang
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China
| | - Lijuan Wang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Jinyi Zeng
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China
| | - Wen Shen
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China.
| |
Collapse
|
3
|
Baliyan D, Sharma R, Goyal S, Chhabra R, Singh B. Phytochemical strategies in glioblastoma therapy: Mechanisms, efficacy, and future perspectives. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167647. [PMID: 39740382 DOI: 10.1016/j.bbadis.2024.167647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Glioblastoma (GBM) is foremost the most aggressive primary brain tumor, presenting extensive therapeutic challenges due to its high invasiveness, genetic complexity, and resistance to established treatments. Despite substantial advances in surgical and chemotherapeutic interventions, the median survival rate for patients is only 14.6 months, and the prognosis remains poor. This review focuses on the molecular hallmarks of GBM, including the activation of the PI3K/Akt pathway, genomic instability, and the deregulation of epidermal growth factor receptor (EGFR), all of which contribute to the tumor's aggressive behavior. Current therapies, such as Temozolomide and Bevacizumab, have limitations, highlighting the need for novel treatment strategies. Phytochemicals, bioactive compounds found in plants, have emerged as potential therapeutic agents by targeting multiple cellular pathways involved in GBM progression. This review provides an overview of key phytochemicals, including quercetin, curcumin, apigenin, and resveratrol. These compounds have shown promise in preclinical studies, with their anti-invasive, anti- angiogenic, pro-apoptotic, and anti-proliferative properties positioning them as strong candidates for GBM therapy. While phytochemicals offer a promising avenue for GBM treatment, further research is required to fully understand their mechanisms of action and to evaluate their efficiency in clinical settings. Developing multi-targeted, safer, and cost-effective anti-GBM therapies could significantly improve patient outcomes.
Collapse
Affiliation(s)
- Deepanjali Baliyan
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India
| | - Rajni Sharma
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India.
| | - Shipra Goyal
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India.
| | - Baljinder Singh
- Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
4
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:417-448. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Schiavoni V, Emanuelli M, Sartini D, Salvolini E, Pozzi V, Campagna R. Curcumin and its Analogues in Oral Squamous Cell Carcinoma: State-of-the-art and Therapeutic Potential. Anticancer Agents Med Chem 2025; 25:313-329. [PMID: 38757321 DOI: 10.2174/0118715206297840240510063330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the most common cancer arising from squamous epithelium in the oral cavity and is characterized by high aggressiveness and metastatic potential, which together with a late diagnosis results in a 5-year survival rate of only 50% of patients. The therapeutic options for OSCC management are limited and largely influenced by the cancer stage. While radical surgery can be curative in early stage of disease, most cases require adjuvant therapies, including chemotherapy and radiotherapy which, however, often achieve poor curative rates and are associated with important negative effects. Therefore, there is an urgent need to discover new alternative treatment strategies to improve patients' outcomes. Several medicinal herbs are being studied for their preventive or therapeutic effect in several diseases, including cancer. In particular, the Indian spice curcumin, largely used in oriental countries, has been studied as a chemopreventive or adjuvant agent for different malignancies. Indeed, curcumin is characterized by important biological properties, including antioxidant, anti-inflammatory, and anticancer effects, which could also be exploited in OSCC. However, due to its limited bioavailability and poor aqueous solubility, this review is focused on studies designing new synthetic analogues and developing novel types of curcumin delivery systems to improve its pharmacokinetic and biological properties. Thus, this review analyses the potential therapeutic role of curcumin in OSCC by providing an overview of current in vitro and in vivo studies demonstrating the beneficial effects of curcumin and its analogues in OSCC.
Collapse
Affiliation(s)
- Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, 60131, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60020, Italy
| |
Collapse
|
6
|
Lee SH, Shin MK, Sung JS. Tamarixetin Protects Chondrocytes against IL-1β-Induced Osteoarthritis Phenotype by Inhibiting NF-κB and Activating Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1166. [PMID: 39456419 PMCID: PMC11505541 DOI: 10.3390/antiox13101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage breakdown and chronic inflammation in joints. As the most prevalent form of arthritis, OA affects around 600 million people globally. Despite the increasing number of individuals with OA risk factors, such as aging and obesity, there is currently no effective cure for the disease. In this context, this study investigated the therapeutic effects of tamarixetin, a flavonoid with antioxidative and anti-inflammatory properties, against OA pathology and elucidated the underlying molecular mechanism. In interleukin-1β (IL-1β)-treated chondrocytes, tamarixetin inhibited the OA phenotypes, restoring cell viability and chondrogenic properties while reducing hypertrophic differentiation and dedifferentiation. Tamarixetin alleviated oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation and inhibited mitogen-activated protein kinase and nuclear factor-κB (NF-κB). Furthermore, tamarixetin attenuated pyroptosis, a programmed cell death caused by excessive inflammation, by suppressing inflammasome activation. We confirmed that the chondroprotective effects of tamarixetin are mediated by the concurrent upregulation of Nrf2 signaling and downregulation of NF-κB signaling, which are key players in balancing antioxidative and inflammatory responses. Overall, our study demonstrated that tamarixetin possesses chondroprotective properties by alleviating IL-1β-induced cellular stress in chondrocytes, suggesting its therapeutic potential to relieve OA phenotype.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (S.-H.L.); (M.K.S.)
| |
Collapse
|
7
|
Bas TG. Bioactivity and Bioavailability of Carotenoids Applied in Human Health: Technological Advances and Innovation. Int J Mol Sci 2024; 25:7603. [PMID: 39062844 PMCID: PMC11277215 DOI: 10.3390/ijms25147603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This article presents a groundbreaking perspective on carotenoids, focusing on their innovative applications and transformative potential in human health and medicine. Research jointly delves deeper into the bioactivity and bioavailability of carotenoids, revealing therapeutic uses and technological advances that have the potential to revolutionize medical treatments. We explore pioneering therapeutic applications in which carotenoids are used to treat chronic diseases such as cancer, cardiovascular disease, and age-related macular degeneration, offering novel protective mechanisms and innovative therapeutic benefits. Our study also shows cutting-edge technological innovations in carotenoid extraction and bioavailability, including the development of supramolecular carriers and advanced nanotechnology, which dramatically improve the absorption and efficacy of these compounds. These technological advances not only ensure consistent quality but also tailor carotenoid therapies to each patient's health needs, paving the way for personalized medicine. By integrating the latest scientific discoveries and innovative techniques, this research provides a prospective perspective on the clinical applications of carotenoids, establishing a new benchmark for future studies in this field. Our findings underscore the importance of optimizing carotenoid extraction, administration, bioactivity, and bioavailability methods to develop more effective, targeted, and personalized treatments, thus offering visionary insight into their potential in modern medical practices.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Catolica del Norte, Coquimbo 1780000, Chile
| |
Collapse
|
8
|
Alsharairi NA. The Role of Licorice Chalcones as Molecular Genes and Signaling Pathways Modulator-A Review of Experimental Implications for Nicotine-Induced Non-Small Cell Lung Cancer Treatment. Curr Issues Mol Biol 2024; 46:5894-5908. [PMID: 38921023 PMCID: PMC11202283 DOI: 10.3390/cimb46060352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Lung cancer (LC) represents the leading cause of global cancer deaths, with cigarette smoking being considered a major risk factor. Nicotine is a major hazardous compound in cigarette smoke (CS), which stimulates LC progression and non-small cell lung cancer (NSCLC) specifically through activation of the nicotinic acetylcholine receptor (α7nAChR)-mediated cell-signaling pathways and molecular genes involved in proliferation, angiogenesis, and metastasis. Chalcones (CHs) and their derivatives are intermediate plant metabolites involved in flavonol biosynthesis. Isoliquiritigenin (ILTG), licochalcone A-E (LicoA-E), and echinatin (ECH) are the most common natural CHs isolated from the root of Glycyrrhiza (also known as licorice). In vitro and/or vivo experiments have shown that licorice CHs treatment exhibits a range of pharmacological effects, including antioxidant, anti-inflammatory, and anticancer effects. Despite advances in NSCLC treatment, the mechanisms of licorice CHs in nicotine-induced NSCLC treatment remain unknown. Therefore, the aim of this paper is to review experimental studies through the PubMed/Medline database that reveal the effects of licorice CHs and their potential mechanisms in nicotine-induced NSCLC treatment.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
9
|
Seraglio SKT, Schulz M, Silva B, Pasini Deolindo CT, Hoff RB, Gonzaga LV, Fett R, Costa ACO. Chemical Constituents and Antioxidant Potential of Red Guava (Psidium cattleianum Sabine) from Southern Brazil in Different Edible Ripening Stages. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:166-172. [PMID: 38252363 DOI: 10.1007/s11130-024-01141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Ripening and growing location are important factors that can impact fruit quality characteristics. In this study, the influence of these factors on physicochemical characteristics, carbohydrates, aliphatic organic acids, phenolic compounds, and antioxidant capacity of red guava (Psidium cattleianum Sabine) was evaluated. Fruit ripening increased fructose and glucose (up to 22.83 and 16.42 g 100 g- 1 dry matter (DM), respectively), and decreased citric acid, the major organic acid (up to 135.35 mg g- 1 DM). Ripening and growing location also influenced the concentration of phenolic compounds and antioxidant capacity of red guava, in which a dependency between both factors was observed in most cases. Apigenin, galangin, isoquercitrin, among other phenolic compounds were quantified for the first time in red guava, in which isoquercitrin was the major (up to 13409.81 mg kg- 1 DM). The antioxidant potential of red guava was also confirmed by ferric reducing antioxidant power assay (up to 82.63 µmol Fe+ 2 g- 1 DM), Folin-Ciocalteu reducing capacity assay (up to 17.79 mg gallic acid equivalent g- 1 DM), and DPPH free radical scavenging assay (up to 25.36 mg ascorbic acid equivalent g- 1 DM). These results especially demonstrated the bioactive potential of red guava and provided knowledge regarding the influence of ripening and growing location on chemical and bioactive components encouraging its industrial exploitation.
Collapse
Affiliation(s)
- Siluana Katia Tischer Seraglio
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga 1346, Itacorubi, Florianópolis, SC, 88034-001, Brazil.
| | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga 1346, Itacorubi, Florianópolis, SC, 88034-001, Brazil
| | - Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga 1346, Itacorubi, Florianópolis, SC, 88034-001, Brazil
| | - Carolina Turnes Pasini Deolindo
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga 1346, Itacorubi, Florianópolis, SC, 88034-001, Brazil
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, São José, 91780-580, SC, Brazil
| | - Rodrigo Barcellos Hoff
- Federal Agricultural Defense Laboratory, Brazilian Ministry of Agriculture, Livestock and Food Supply, São José, 91780-580, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga 1346, Itacorubi, Florianópolis, SC, 88034-001, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga 1346, Itacorubi, Florianópolis, SC, 88034-001, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga 1346, Itacorubi, Florianópolis, SC, 88034-001, Brazil.
| |
Collapse
|