1
|
Cao L, Wang XL, Chu T, Wang YW, Fan YQ, Chen YH, Zhu YW, Zhang J, Ji XY, Wu DD. Role of gasotransmitters in necroptosis. Exp Cell Res 2024; 442:114233. [PMID: 39216662 DOI: 10.1016/j.yexcr.2024.114233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.
Collapse
Affiliation(s)
- Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Jing Zhang
- Department of Stomatology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475001, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Kaifeng, Henan, 475000, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Peng M, Yue P, Zhang Y, Li H, Hua Y, Li Y, Zheng H, Liu F. A nomogram prediction of coronary artery dilation in Kawasaki diseases based on mtDNA copy number. Front Immunol 2024; 15:1448558. [PMID: 39206185 PMCID: PMC11349549 DOI: 10.3389/fimmu.2024.1448558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Objective The level of mitochondrial DNA copy number (mtDNA-CN) in peripheral blood cells had been identified to be involved in several immune and cardiovascular diseases. Thus, the aim of this study is to evaluate the levels of mtDNA-CN in Kawasaki disease (KD) and to construct a nomogram prediction for coronary artery lesions in children with KD. Methods One hundred and forty-four children with KD diagnosed from March 2020 to March 2022 were involved in the study. The clinical features and laboratory test parameters of these children were assessed between the KD and normal groups. Univariable and multivariable analyses were performed sequentially to identify the essential risk factors. Subsequently, a nomogram prediction was constructed. Results A total of 274 children were included in the analysis. Of these, 144 (52.6%) represented the KD group. Peripheral blood DNA mtDNA qPCR showed that the -log value of mtDNA-CN in the KD group (6.67 ± 0.34) was significantly higher than that in the healthy group (6.40 ± 0.18) (P<0.001). The area under the ROC curve for mtDNA-CN in distinguishing KD was 0.757. MtDNA-CN (OR = 13.203, P = 0.009, 95% CI 1.888-92.305), RBC (OR = 5.135, P = 0.014, 95% CI 1.394-18.919), and PA (OR = 0.959, P = 0.014, 95% CI 0.927-0.991) were identified as independent risk factors for coronary artery dilation in children with KD. Finally, the nomogram predictive was established based on the results of multivariable analysis, demonstrating the satisfied prediction and calibration values. Conclusion The results of this study revealed that mtDNA-CN could be used as a biomarker in predicting the development of KD. Furthermore, the higher the mtDNA-CN was significantly associated with coronary artery dilation in KD.
Collapse
Affiliation(s)
- Mou Peng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fangfei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Tsuge M, Ichihara E, Hasegawa K, Kudo K, Tanimoto Y, Nouso K, Oda N, Mitsumune S, Kimura G, Yamada H, Takata I, Mitsuhashi T, Taniguchi A, Tsukahara K, Aokage T, Hagiya H, Toyooka S, Tsukahara H, Maeda Y. Increased Oxidative Stress and Decreased Citrulline in Blood Associated with Severe Novel Coronavirus Pneumonia in Adult Patients. Int J Mol Sci 2024; 25:8370. [PMID: 39125944 PMCID: PMC11313210 DOI: 10.3390/ijms25158370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigated the correlation between oxidative stress and blood amino acids associated with nitric oxide metabolism in adult patients with coronavirus disease (COVID-19) pneumonia. Clinical data and serum samples were prospectively collected from 100 adult patients hospitalized for COVID-19 between July 2020 and August 2021. Patients with COVID-19 were categorized into three groups for analysis based on lung infiltrates, oxygen inhalation upon admission, and the initiation of oxygen therapy after admission. Blood data, oxidative stress-related biomarkers, and serum amino acid levels upon admission were compared in these groups. Patients with lung infiltrations requiring oxygen therapy upon admission or starting oxygen post-admission exhibited higher serum levels of hydroperoxides and lower levels of citrulline compared to the control group. No remarkable differences were observed in nitrite/nitrate, asymmetric dimethylarginine, and arginine levels. Serum citrulline levels correlated significantly with serum lactate dehydrogenase and C-reactive protein levels. A significant negative correlation was found between serum levels of citrulline and hydroperoxides. Levels of hydroperoxides decreased, and citrulline levels increased during the recovery period compared to admission. Patients with COVID-19 with extensive pneumonia or poor oxygenation showed increased oxidative stress and reduced citrulline levels in the blood compared to those with fewer pulmonary complications. These findings suggest that combined oxidative stress and abnormal citrulline metabolism may play a role in the pathogenesis of COVID-19 pneumonia.
Collapse
Affiliation(s)
- Mitsuru Tsuge
- Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (E.I.); (A.T.)
| | - Kou Hasegawa
- Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (K.H.); (H.H.)
| | - Kenichiro Kudo
- Department of Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, Okayama 701-1192, Japan; (K.K.); (S.M.)
| | - Yasushi Tanimoto
- Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, Okayama 701-0304, Japan; (Y.T.); (G.K.)
| | - Kazuhiro Nouso
- Department of Gastroenterology, Okayama City Hospital, Okayama 700-0962, Japan;
| | - Naohiro Oda
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama 721-0971, Japan; (N.O.); (I.T.)
| | - Sho Mitsumune
- Department of Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, Okayama 701-1192, Japan; (K.K.); (S.M.)
| | - Goro Kimura
- Department of Allergy and Respiratory Medicine, National Hospital Organization Minami-Okayama Medical Center, Okayama 701-0304, Japan; (Y.T.); (G.K.)
| | - Haruto Yamada
- Department of Infectious Disease, Okayama City Hospital, Okayama 700-0962, Japan;
| | - Ichiro Takata
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama 721-0971, Japan; (N.O.); (I.T.)
| | - Toshiharu Mitsuhashi
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Akihiko Taniguchi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama 700-8558, Japan; (E.I.); (A.T.)
| | - Kohei Tsukahara
- Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (K.T.); (T.A.)
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care and Disaster Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (K.T.); (T.A.)
| | - Hideharu Hagiya
- Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (K.H.); (H.H.)
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrine Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Hirokazu Tsukahara
- Department of Pediatrics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| |
Collapse
|
4
|
Shih WL, Yeh TM, Chen KD, Leu S, Liu SF, Huang YH, Kuo HC. Hydrogen Gas Inhalation Treatment for Coronary Artery Lesions in a Kawasaki Disease Mouse Model. Life (Basel) 2024; 14:796. [PMID: 39063551 PMCID: PMC11277616 DOI: 10.3390/life14070796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Kawasaki disease (KD) is a syndrome primarily affecting young children, typically under the age of five, and is characterized by the development of acute vasculitis. Through extensive research conducted on both murine and human subjects, it has been demonstrated that heightened levels of reactive oxygen species (ROS) play a pivotal role in the development of KD, especial coronary artery lesions (CALs). Hydrogen gas exhibits potent antioxidant properties that effectively regulate ROS production and the inflammatory response. METHODS We used Lactobacillus casei cell wall extract (LCWE)-induced vasculitis in mice as an animal model of KD and treated the mice with hydrogen gas inhalation. RESULTS We observed significant dilatation and higher Z scores in the left coronary artery (LCA) in D21 and D28 in mice after LCWE treatment compared to the control group (p < 0.001) and a significant resolution of LCA diameters (p < 0.01) and Z scores (p < 0.01) after treatment with inhaled hydrogen gas. We further demonstrated that serum IL-6 expression was higher in mice after LCWE treatment (p < 0.01) and IL-6 significantly decreased after inhaled hydrogen gas therapy (p < 0.001). CONCLUSION According to our literature review, this is the first report where hydrogen gas inhalation has been demonstrated to be effective for the treatment of coronary artery dilatation in a KD murine model.
Collapse
Affiliation(s)
- Wen-Ling Shih
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu 912301, Taiwan; (W.-L.S.); (T.-M.Y.)
- General Research Service Center, National Pingtung University of Science and Technology, Neipu 912301, Taiwan
| | - Tsung-Ming Yeh
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu 912301, Taiwan; (W.-L.S.); (T.-M.Y.)
- General Research Service Center, National Pingtung University of Science and Technology, Neipu 912301, Taiwan
| | - Kuang-Den Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (K.-D.C.); (S.L.)
- Kawasaki Disease Center, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (K.-D.C.); (S.L.)
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 83301, Taiwan
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Ying-Hsien Huang
- Kawasaki Disease Center, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ho-Chang Kuo
- Kawasaki Disease Center, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
5
|
Mizushima T, Kubota S, Iijima Y, Takasugi N, Uehara T. Transcriptome analysis in various cell lines exposed to nitric oxide. J Toxicol Sci 2024; 49:281-288. [PMID: 38825487 DOI: 10.2131/jts.49.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nitric oxide (NO) plays a physiological role in signal transduction and excess or chronic NO has toxic effects as an inflammatory mediator. NO reversibly forms protein S-nitrosylation and exerts toxicological functions related to disease progression. DNA methyltransferases, epigenome-related enzymes, are inhibited in enzymatic activity by S-nitrosylation. Therefore, excess or chronic NO exposure may cause disease by altering gene expression. However, the effects of chronic NO exposure on transcriptome are poorly understood. Here, we performed transcriptome analysis of A549, AGS, HEK293T, and SW48 cells exposed to NO (100 μM) for 48 hr. We showed that the differentially expressed genes were cell-specific. Gene ontology analysis showed that the functional signature of differentially expressed genes related to cell adhesion or migration was upregulated in several cell lines. Gene set enrichment analysis indicated that NO stimulated inflammation-related gene expression in various cell lines. This finding supports previous studies showing that NO is closely involved in inflammatory diseases. Overall, this study elucidates the pathogenesis of NO-associated inflammatory diseases by focusing on changes in gene expression.
Collapse
Affiliation(s)
- Tohta Mizushima
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Sho Kubota
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yuta Iijima
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
6
|
Inada Y, Sonoda M, Mizuno Y, Yamamura K, Motomura Y, Takuma A, Murata K, Furuno K, Tezuka J, Sakai Y, Ohga S, Kishimoto J, Hosaka K, Sakata S, Hara T. CD14 down-modulation as a real-time biomarker in Kawasaki disease. Clin Transl Immunology 2023; 13:e1482. [PMID: 38162960 PMCID: PMC10757666 DOI: 10.1002/cti2.1482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/19/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives The objectives of this study were to investigate the pathophysiology of Kawasaki disease (KD) from immunological and oxidative stress perspectives, and to identify real-time biomarkers linked to innate immunity and oxidative stress in KD. Methods We prospectively enrolled 85 patients with KD and 135 patients with diverse conditions including immune, infectious and non-infectious diseases for this investigation. Flow cytometry was used to analyse the surface expression of CD14, CD38 and CD62L on monocytes, along with a quantitative assessment of CD14 down-modulation. Additionally, oxidative stress levels were evaluated using derivatives of reactive oxygen metabolites (d-ROMs) and antioxidant capacity measured by a free radical elective evaluator system. Results During the acute phase of KD, we observed a prominent CD14 down-modulation on monocytes, reflecting the indirect detection of circulating innate immune molecular patterns. Moreover, patients with KD showed a significantly higher CD14 down-modulation compared with infectious and non-infectious disease controls. Notably, the surface expression of CD14 on monocytes was restored concurrently with responses to intravenous immunoglobulin and infliximab treatment in KD. Furthermore, d-ROM levels in patients with KD were significantly elevated compared with patients with infectious and non-infectious diseases. Following intravenous immunoglobulin treatment, oxidative stress levels decreased in patients with KD. Conclusion Monitoring CD14 down-modulation on monocytes in real-time is a valuable strategy for assessing treatment response, distinguishing KD relapse from concomitant infections and selecting second-line therapy after IVIG treatment in KD patients. The interplay between inflammation and oxidative stress likely plays a crucial role in the development of KD.
Collapse
Affiliation(s)
- Yutaro Inada
- Kawasaki Disease CenterFukuoka Children's HospitalFukuokaJapan
| | - Motoshi Sonoda
- Department of Hematology and ImmunologyFukuoka Children's HospitalFukuokaJapan
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yumi Mizuno
- Kawasaki Disease CenterFukuoka Children's HospitalFukuokaJapan
| | - Kenichiro Yamamura
- Department of Cardiology and Intensive CareFukuoka Children's HospitalFukuokaJapan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Aoba Takuma
- Kawasaki Disease CenterFukuoka Children's HospitalFukuokaJapan
| | - Kenji Murata
- Kawasaki Disease CenterFukuoka Children's HospitalFukuokaJapan
| | - Kenji Furuno
- Kawasaki Disease CenterFukuoka Children's HospitalFukuokaJapan
| | - Junichiro Tezuka
- Department of Allergy and Respiratory MedicineFukuoka Children's HospitalFukuokaJapan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Junji Kishimoto
- Department of Research and Development of Next Generation Medicine, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Koki Hosaka
- Department of Clinical LaboratoryFukuoka Children's HospitalFukuokaJapan
| | - Satomi Sakata
- Department of Clinical LaboratoryFukuoka Children's HospitalFukuokaJapan
| | - Toshiro Hara
- Kawasaki Disease CenterFukuoka Children's HospitalFukuokaJapan
| |
Collapse
|