1
|
Shakour N, Mahdinezhad MR, Hadjzadeh MAR, Sahebkar A, Hadizadeh F. Serum biochemical evaluation following administration of imidazolyl thiazolidinedione in streptozotocin-induced diabetic rats. J Mol Histol 2024:10.1007/s10735-024-10272-8. [PMID: 39382759 DOI: 10.1007/s10735-024-10272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Diabetes mellitus represents a prominent global health concern, characterized by a rising prevalence rate. Type 2 Diabetes Mellitus (T2DM) is purported to be associated with an intricate interplay of genetic, environmental, and lifestyle factors. While some progress have been made in T2DM management, controlling associated complications remains a great challenge in medicine. OBJECTIVES This study investigated a synthesized Imidazolyl Thiazolidinedione antidiabetic agent (PA9), focusing on serum parameters. METHODS Streptozotocin-induced diabetic rats (n = 6) were subjected to orally treatment with PA9 (synthesized by Shakour et al. in an equal dose of a standard drug, 0.011 mmol/kg). The study conducted to measure some specific serum factors, including lipid profiles, liver and kidney enzymes, cardiac enzymes, and oxidative stress markers, both before and after treatment. RESULTS The study findings indicated that PA9 effectively ameliorates hyperlipidemia by significantly reducing total cholesterol and triglyceride levels in serum. Additionally, PA9 demonstrated hepatoprotective effects against TZD-induced injuries, as evidenced by decreased levels of alanine transaminase and, alkaline phosphatase. In addition, PA9 also exhibited a modulatory effect on a cardiac injury marker, creatine kinase MB. Moreover, PA9 demonstrated antioxidant properties by reducing oxidative stress markers and enhancing the activities of catalase, thiol, and superoxide dismutase. CONCLUSIONS The synthesized TZD compound (PA9) stands out as a highly promising agent for the management of diabetes. Its significant antihyperlipidemic effects, preventive influences on organ injuries, and demonstrated efficacy in reducing oxidative stress marker (SOD) make it therapeutic agent in diabetes management. This study lays the groundwork for innovative strategies in diabetes management.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Mahdinezhad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Ashaq B, Rasool K, Habib S, Bashir I, Nisar N, Mustafa S, Ayaz Q, Nayik GA, Uddin J, Ramniwas S, Mugabi R, Wani SM. Insights into chemistry, extraction and industrial application of lemon grass essential oil -A review of recent advances. Food Chem X 2024; 22:101521. [PMID: 38952570 PMCID: PMC11215000 DOI: 10.1016/j.fochx.2024.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Lemongrass essential oil (LEO), extracted from high-oil lemongrass, gains prominence as a versatile natural product due to growing demand for safe health solutions. LEO comprises beneficial compounds like citral, isoneral, geraniol, and citronellal, offering diverse pharmacological benefits such as antioxidant, antifungal, antibacterial, antiviral, and anticancer effects. LEO finds applications in food preservation, cosmetics, and pharmaceuticals, enhancing profitability across these sectors. The review focuses on the extraction of LEO, emphasizing the need for cost-effective methods. Ultrasound and supercritical fluid extraction are effective in reducing extraction time, increasing yields, and enhancing oil quality. LEO shows promise as a valuable natural resource across industries, with applications in packaging, coating, and film development. LEO's ability to extend the shelf life of food items and impart natural flavors positions it as a valuable asset. Overall, the review emphasizes LEO's therapeutic, antimicrobial, and antioxidant properties, strengthening its potential in the food, pharmaceutical, and cosmetic sectors.
Collapse
Affiliation(s)
- Barjees Ashaq
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Khansa Rasool
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Samira Habib
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Iqra Bashir
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Naseh Nisar
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Sehrish Mustafa
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Qudsiya Ayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College, Shopian 192303, J&K, India
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Asir 61421, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| |
Collapse
|
3
|
dos Santos EDJB, Bezerra FWF, da Silva LRR, da Silva MP, Ferreira OO, da Silva Martins LH, de Jesus Chaves-Neto AM, de Santana Botelho A, Kumar R, Bargali P, do Socorro de Souza Vilhena K, de Aguiar Andrade EH, de Oliveira MS. Exploring the Potential of Myrcia Genus Essential Oils: A Review of Biological Activities and Recent Advances. Molecules 2024; 29:2720. [PMID: 38930786 PMCID: PMC11206906 DOI: 10.3390/molecules29122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The present study provides a comprehensive analysis of the chemical composition of essential oils from species of the Myrcia genus and their applications. The compiled results highlight the chemical diversity and biological activities of these oils, emphasizing their potential importance for various therapeutic and industrial applications. The findings reveal that Myrcia essential oils present a variety of bioactive compounds, such as monoterpenes and sesquiterpenes, which demonstrate antimicrobial activities against a range of microorganisms, including Gram-positive and Gram-negative bacteria, as well as yeasts. Furthermore, this study highlights the phytotoxic activity of these oils, indicating their potential for weed control. The results also point to the insecticidal potential of Myrcia essential oils against a range of pests, showing their viability as an alternative to synthetic pesticides. Additionally, species of the genus Myrcia have demonstrated promising hypoglycemic effects, suggesting their potential in diabetes treatment. This comprehensive synthesis represents a significant advancement in understanding Myrcia essential oils, highlighting their chemical diversity and wide range of biological activities. However, the need for further research is emphasized to fully explore the therapeutic and industrial potential of these oils, including the identification of new compounds, understanding of their mechanisms of action, and evaluation of safety and efficacy in different contexts.
Collapse
Affiliation(s)
- Eliza de Jesus Barros dos Santos
- Graduate Program in Biological Sciences, Concentration Area—Tropical Botany, Federal Rural University of the Amazon and Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (E.d.J.B.d.S.); (L.R.R.d.S.); (E.H.d.A.A.)
| | - Fernanda Wariss Figueiredo Bezerra
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (F.W.F.B.); (L.H.d.S.M.)
| | - Luiz Renan Ramos da Silva
- Graduate Program in Biological Sciences, Concentration Area—Tropical Botany, Federal Rural University of the Amazon and Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (E.d.J.B.d.S.); (L.R.R.d.S.); (E.H.d.A.A.)
| | - Marcilene Paiva da Silva
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (M.P.d.S.); (O.O.F.); (A.d.S.B.); (K.d.S.d.S.V.)
| | - Oberdan Oliveira Ferreira
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (M.P.d.S.); (O.O.F.); (A.d.S.B.); (K.d.S.d.S.V.)
| | - Luiza Helena da Silva Martins
- Graduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (F.W.F.B.); (L.H.d.S.M.)
| | - Antônio Maia de Jesus Chaves-Neto
- Laboratory of Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, C. P. 479, Belém 66075-110, PA, Brazil;
| | - Anderson de Santana Botelho
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (M.P.d.S.); (O.O.F.); (A.d.S.B.); (K.d.S.d.S.V.)
| | - Ravendra Kumar
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, India; (R.K.); (P.B.)
| | - Pooja Bargali
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, India; (R.K.); (P.B.)
| | - Karyme do Socorro de Souza Vilhena
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (M.P.d.S.); (O.O.F.); (A.d.S.B.); (K.d.S.d.S.V.)
| | - Eloisa Helena de Aguiar Andrade
- Graduate Program in Biological Sciences, Concentration Area—Tropical Botany, Federal Rural University of the Amazon and Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (E.d.J.B.d.S.); (L.R.R.d.S.); (E.H.d.A.A.)
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (M.P.d.S.); (O.O.F.); (A.d.S.B.); (K.d.S.d.S.V.)
| | - Mozaniel Santana de Oliveira
- Graduate Program in Biological Sciences, Concentration Area—Tropical Botany, Federal Rural University of the Amazon and Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (E.d.J.B.d.S.); (L.R.R.d.S.); (E.H.d.A.A.)
- Adolpho Ducke Laboratory—Coordination of Botany, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (M.P.d.S.); (O.O.F.); (A.d.S.B.); (K.d.S.d.S.V.)
| |
Collapse
|
4
|
Bhattacharya S, Gupta N, Flekalová A, Gordillo-Alarcón S, Espinel-Jara V, Fernández-Cusimamani E. Exploring Folklore Ecuadorian Medicinal Plants and Their Bioactive Components Focusing on Antidiabetic Potential: An Overview. PLANTS (BASEL, SWITZERLAND) 2024; 13:1436. [PMID: 38891245 PMCID: PMC11174784 DOI: 10.3390/plants13111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Diabetes mellitus (DM) is a global health concern characterized by a deficiency in insulin production. Considering the systemic toxicity and limited efficacy associated with current antidiabetic medications, there is the utmost need for natural, plant-based alternatives. Herbal medicines have experienced exponential growth in popularity globally in recent years for their natural origins and minimal side effects. Ecuador has a rich cultural history in ethnobotany that plays a crucial role in its people's lives. This study identifies 27 Ecuadorian medicinal plants that are traditionally used for diabetes treatment and are prepared through infusion, decoction, or juice, or are ingested in their raw forms. Among them, 22 plants have demonstrated hypoglycemic or anti-hyperglycemic properties that are rich with bioactive phytochemicals, which was confirmed in several in vitro and in vivo studies. However, Bryophyllum gastonis-bonnieri, Costus villosissimus, Juglans neotropica, Pithecellobium excelsum, and Myroxylon peruiferum, which were extensively used in traditional medicine preparation in Ecuador for many decades to treat diabetes, are lacking in pharmacological elucidation. The Ecuadorian medicinal plants used to treat diabetes have been found to have several bioactive compounds such as flavonoids, phenolics, fatty acids, aldehydes, and terpenoids that are mainly responsible for reducing blood sugar levels and oxidative stress, regulating intestinal function, improving insulin resistance, inhibiting α-amylase and α-glucosidase, lowering gluconeogenic enzymes, stimulating glucose uptake mechanisms, and playing an important role in glucose and lipid metabolism. However, there is a substantial lack of integrated approaches between the existing ethnomedicinal practices and pharmacological research. Therefore, this review aims to discuss and explore the traditional medicinal plants used in Ecuador for treating DM and their bioactive phytochemicals, which are mainly responsible for their antidiabetic properties. We believe that the use of Ecuadorian herbal medicine in a scientifically sound way can substantially benefit the local economy and industries seeking natural products.
Collapse
Affiliation(s)
- Soham Bhattacharya
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic;
| | - Neha Gupta
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic; (N.G.); (A.F.)
| | - Adéla Flekalová
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic; (N.G.); (A.F.)
| | - Salomé Gordillo-Alarcón
- Department of Medicine, Faculty of Health Sciences, Universidad Técnica del Norte, Avda. 17 de Julio 5-21, Ibarra 100105, Ecuador;
| | - Viviana Espinel-Jara
- Department of Nursing, Faculty of Health Sciences, Universidad Técnica del Norte, Avda. 17 de Julio 5-21, Ibarra 100105, Ecuador;
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16500 Suchdol, Czech Republic; (N.G.); (A.F.)
| |
Collapse
|
5
|
Pezantes-Orellana C, German Bermúdez F, Matías De la Cruz C, Montalvo JL, Orellana-Manzano A. Essential oils: a systematic review on revolutionizing health, nutrition, and omics for optimal well-being. Front Med (Lausanne) 2024; 11:1337785. [PMID: 38435393 PMCID: PMC10905622 DOI: 10.3389/fmed.2024.1337785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Essential oils from various plants have diverse therapeutic properties and are researched extensively. They have applications in medicine, aromatherapy, microbiology, agriculture, livestock, and the food industry, benefiting the population. Methods This systematic review followed the PRISMA verification protocol. The study focused on the anti-inflammatory effects, nutraceutical properties, antioxidant and antibacterial activity of essential oils in lemon, orange, cumin, cinnamon, coriander, rosemary, thyme, and parsley. We also looked at their presence in the diet, their effect, their mechanism of action on health, and the most important active compounds. The search was conducted in the PubMed database for the last 12 years of publications, including in vitro, in vivo, and online cell model tests. Results Essential oils have been shown to have multiple health benefits, primarily due to their antimicrobial and anti-inflammatory effects. The mechanism of action of cinnamon oil alters bacterial membranes, modifies lipid profiles, and inhibits cell division, giving a potential benefit in protection against colitis. On the other hand, a significant improvement was observed in the diastolic pressure of patients with metabolic syndrome when supplementing them with cumin essential oil. The antimicrobial properties of coriander essential oil, especially its application in seafood like tilapia, demonstrate efficacy in improving health and resistance to bacterial infections. Cumin essential oil treats inflammation. Parsley essential oil is an antioxidant. Orange peel oil is antibacterial, antifungal, antiparasitic, and pro-oxidative. Lemon essential oil affects mouse intestinal microbiota. Thyme essential oil protects the colon against damage and DNA methylation. Carnosic acid in rosemary oil can reduce prostate cancer cell viability by modifying the endoplasmic reticulum function. Conclusion and discussion Essential oils have many therapeutic and antiparasitic properties. They are beneficial to human health in many ways. However, to understand their potential benefits, more research is needed regarding essential oils such as coriander, parsley, rosemary, cumin, and thyme. These research gaps are relevant since they restrict understanding of the possible benefits of these crucial oils for health-related contexts.
Collapse
Affiliation(s)
| | - Fátima German Bermúdez
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Carmen Matías De la Cruz
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | | | - Andrea Orellana-Manzano
- Laboratorio para Investigaciones Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| |
Collapse
|
6
|
Feriotto G, Tagliati F, Costa V, Monesi M, Tabolacci C, Beninati S, Mischiati C. α-Pinene, a Main Component of Pinus Essential Oils, Enhances the Expression of Insulin-Sensitive Glucose Transporter Type 4 in Murine Skeletal Muscle Cells. Int J Mol Sci 2024; 25:1252. [PMID: 38279251 PMCID: PMC10816943 DOI: 10.3390/ijms25021252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Glucose transporter-4 (GLUT4) represents the major glucose transporter isoform responsible for glucose uptake into insulin-sensitive cells, primarily in skeletal muscle and adipose tissues. In insulin-resistant conditions, such as type 2 diabetes mellitus, GLUT4 expression and/or translocation to the cell plasma membrane is reduced, compromising cell energy metabolism. Therefore, the use of synthetic or naturally occurring molecules able to stimulate GLUT4 expression represents a good tool for alternative treatments of insulin resistance. The present study aimed to investigate the effects of essential oils (EOs) derived from Pinus spp. (P. nigra and P. radiata) and of their main terpenoid constituents (α- and β-pinene) on the expression/translocation of GLUT4 in myoblast C2C12 murine cells. For this purpose, the chemical profiles of the EOs were first analyzed through gas chromatography-mass spectrometry (GC-MS). Cell viability was assessed by MTT assay, and GLUT4 expression/translocation was evaluated through RT-qPCR and flow cytometry analyses. The results showed that only the P. nigra essential oil (PnEO) and α-pinene can increase the transcription of the Glut4/Scl2a4 gene, resulting in a subsequent increase in the amount of GLUT4 produced and its plasma membrane localization. Moreover, the PnEO or α-pinene can induce Glut4 expression both during myogenesis and in myotubes. In summary, the PnEO and α-pinene emulate insulin's effect on the GLUT4 transporter expression and its translocation to the muscle cell surface.
Collapse
Affiliation(s)
- Giordana Feriotto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Federico Tagliati
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Valentina Costa
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy;
| | - Marcello Monesi
- UOC (Unità Operativa Complessa) Territorial Diabetology, AUSL Ferrara, 44121 Ferrara, Italy;
| | - Claudio Tabolacci
- Research Coordination and Support Service, Superior Institute of Health, 00161 Rome, Italy;
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Carlo Mischiati
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
7
|
Almeida Silva VE, de Freitas Pereira ET, Ferreira JA, Magno Teixeira A, Borges RM, da Silva LCRP. Bioactive Compounds in Citrus Species with Potential for the Treatment of Chronic Venous Disease: A Review. Curr Pharm Des 2024; 30:2835-2849. [PMID: 39108121 DOI: 10.2174/0113816128314974240724045220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/10/2024] [Indexed: 10/22/2024]
Abstract
Chronic venous disease (CVD) significantly impacts global health, presenting a complex challenge in medical management. Despite its prevalence and the burden it places on healthcare systems, CVD remains underdiagnosed and undertreated. This review aims to provide a comprehensive analysis of the bioactive compounds in the Citrus genus, exploring their therapeutic potential in CVD treatment and addressing the gap in current treatment modalities. A narrative review methodology was adopted, focusing on the pharmacological effects of Citrus-derived bioactive compounds, including flavonoids and terpenes. Additionally, the review introduced the DBsimilarity method for analyzing the chemical space and structural similarities among Citrus compounds. The review highlights the Citrus genus as a rich source of pharmacologically active compounds, notably flavonoids and terpenes, which exhibit significant anti-inflammatory, antioxidant, and veno-protective properties. Some of these compounds have been integrated into existing therapies, underscoring their potential for CVD management. The DBsimilarity analysis further identified many clusters of compounds with more than 85% structural similarity. Citrus-derived bioactive compounds offer promising therapeutic potential for managing CVD, showcasing significant anti-inflammatory, antioxidant, and veno-protective effects. The need for further comparative studies, as well as safety and efficacy investigations specific to CVD treatment, is evident. This review underlines the importance of advancing our understanding of these natural compounds and encouraging the development of novel treatments and formulations for effective CVD management. The DBsimilarity method's introduction provides a novel approach to exploring the chemical diversity within the Citrus genus, opening new pathways for pharmacological research.
Collapse
Affiliation(s)
| | | | | | - Andrew Magno Teixeira
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Moreira Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|