1
|
Xiong X, Zeng L, Zeng F, Huang Y, Jia L. Bioinformatics exploration of the S1PR1 receptor in various human cancers and its clinical relevance. Discov Oncol 2025; 16:449. [PMID: 40172754 PMCID: PMC11965076 DOI: 10.1007/s12672-025-02241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND AND OBJECTIVE S1PR1 (sphingosine-1-phosphate receptor 1) plays a critical role in key cancer-related processes such as cell migration, proliferation, and survival. While its functions are well-established in the cardiovascular and immune systems, its mechanism in cancer remains unclear. Our study aims to investigate the expression, mutations, post-translational modifications, and immune infiltration of S1PR1 across different cancers, and particularly focus on its potential as a therapeutic target and prognostic biomarker. METHODS We utilized HPA, GTEx, TCGA and CPTAC bioinformation databases to evaluate the expression level of S1PR1 between normal and cancer tissue. Sequence conservation and phylogenetic analysis of S1PR1 are assessed by NCBI and Pfam database. Gene mutations, methylation, phosphorylation, and immune infiltration of S1PR1 were analyzed by cBioPortal, MethSuv, CPTAC and TIMER2.0 respectively. RESULTS S1PR1 expression varied significantly among cancers, with decreased levels in bladder and breast cancers, and increased levels in renal cell carcinoma, thyroid cancer, and acute myeloid leukemia. Mutation analysis revealed frequent mutations in endometrial, lung, and ovarian cancers. Reduced methylation in lung adenocarcinoma correlated with improved survival. Elevated phosphorylation was observed in glioblastoma and renal carcinoma. Immune infiltration analysis showed significant correlations with CAFs and γδ T cells. CONCLUSION S1PR1 plays a critical role in cancer progression through its expression, mutations, and modifications. These findings suggest that S1PR1 could be served as a potential biomarker and therapeutic target in cancer, but it need a further validation in clinical settings is warranted.
Collapse
Affiliation(s)
- Xing Xiong
- Department of Urology Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Li Zeng
- Department of Urology Surgery, Nanchang People's Hospital Affiliated of Nanchang Medical College, Nanchang, 330009, China
| | - Fanhui Zeng
- Medical College of Nanchang University, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Yu Huang
- Medical College of Nanchang University, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Linghua Jia
- Department of Urology Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
| |
Collapse
|
2
|
Shakerian N, Tafazoli A, Razavinia A, Sadrzadeh Aghajani Z, Bana N, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of Therapeutic and Diagnostic Applications of Exosomes in Pancreatic Cancer. Pancreas 2025; 54:e255-e267. [PMID: 39661050 DOI: 10.1097/mpa.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
ABSTRACT Unusual symptoms, rapid progression, lack of reliable early diagnostic biomarkers, and lack of efficient treatment choices are the ongoing challenges of pancreatic cancer. Numerous research studies have demonstrated the correlation between exosomes and various aspects of pancreatic cancer. In light of these facts, exosomes possess the potential to play functional roles in the treatment, prognosis, and diagnosis of the pancreatic cancer. In the present study, we reviewed the most recent developments in approaches for exosome separation, modification, monitoring, and communication. Moreover, we discussed the clinical uses of exosomes as less invasive liquid biopsies and drug carriers and their contribution to the control of angiogenic activity of pancreatic cancer. Better investigation of exosome biology would help to effectively engineer therapeutic exosomes with certain nucleic acids, proteins, and even exogenous drugs as their cargo. Circulating exosomes have shown promise as reliable candidates for pancreatic cancer early diagnosis and monitoring in high-risk people without clinical cancer manifestation. Although we have tried to reflect the status of exosome applications in the treatment and detection of pancreatic cancer, it is evident that further studies and clinical trials are required before exosomes may be employed as a routine therapeutic and diagnostic tools for pancreatic cancer.
Collapse
Affiliation(s)
- Neda Shakerian
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Aida Tafazoli
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz
| | - Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, IR
| | | | - Nikoo Bana
- Kish International Campus, University of Teheran
| | - Maysam Mard-Soltani
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
3
|
Luan X, Wang X, Bian G, Li X, Gao Z, Liu Z, Zhang Z, Han T, Zhao J, Zhao H, Luan X, Zhu W, Dong L, Guo F. Exosome applications for the diagnosis and treatment of pancreatic ductal adenocarcinoma: An update (Review). Oncol Rep 2025; 53:13. [PMID: 39575479 PMCID: PMC11605277 DOI: 10.3892/or.2024.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant neoplasm that typically manifests with subtle clinical manifestations in its early stages and frequently eludes diagnosis until the advanced phases of the disease. The limited therapeutic options available for PDAC significantly contribute to its high mortality rate, highlighting the urgent need for novel biomarkers capable of effectively identifying early clinical manifestations and facilitating precise diagnosis. The pivotal role of cellular exosomes in both the pathogenesis and therapeutic interventions for PDAC has been underscored. Furthermore, researchers have acknowledged the potential of exosomes as targeted drug carriers against regulatory cells in treating PDAC. The present article aims to provide a comprehensive review encompassing recent advancements in utilizing exosomes for elucidating mechanisms underlying disease development, patterns of metastasis, diagnostic techniques and treatment strategies associated with PDAC.
Collapse
Affiliation(s)
- Xinchi Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuezhe Wang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gang Bian
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Ziru Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zijiao Liu
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhishang Zhang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyue Han
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinpeng Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongjiao Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xinyue Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wuhui Zhu
- Department of Hepatobiliary surgery, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Lili Dong
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
4
|
An J, Park H, Ju M, Woo Y, Seo Y, Min J, Lee T. An updated review on the development of a nanomaterial-based field-effect transistor-type biosensors to detect exosomes for cancer diagnosis. Talanta 2024; 279:126604. [PMID: 39068827 DOI: 10.1016/j.talanta.2024.126604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Cancer, a life-threatening genetic disease caused by abnormalities in normal cell growth regulatory functions, poses a significant challenge that current medical technologies cannot fully overcome. The current desired breakthrough is to diagnose cancer as early as possible and increase survival rates through treatments tailored to the prognosis and appropriate follow-up. From a perspective that reflects this contemporary paradigm of cancer diagnostics, exosomes are emerging as promising biomarkers. Exosomes, serving as mobile biological information repositories of cancer cells, have been known to create a microtumor environment in surrounding cells, and significant insight into the clinical significance of cancer diagnosis targeting them has been reported. Therefore, there are growing interests in constructing a system that enables continuous screening with a focus on patient-friendly and flexible diagnosis, aiming to improve cancer screening rates through exosome detection. This review focuses on a proposed exosome-embedded biological information-detecting platform employing a field-effect transistor (FET)-based biosensor that leverages portability, cost-effectiveness, and rapidity to minimize the stages of sacrifice attributable to cancer. The FET-applied biosensing technique, stemming from variations in an electric field, is considered an early detection system, offering high sensitivity and a prompt response frequency for the qualitative and quantitative analysis of biomolecules. Hence, an in-depth discussion was conducted on the understanding of various exosome-based cancer biomarkers and the clinical significance of recent studies on FET-based biosensors applying them.
Collapse
Affiliation(s)
- Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Minyoung Ju
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Yeeun Woo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Yoshep Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
5
|
Wei C, Zhang C, Zhou Y, Wang J, Jin Y. Progress of Exosomal LncRNAs in Pancreatic Cancer. Int J Mol Sci 2024; 25:8665. [PMID: 39201351 PMCID: PMC11354448 DOI: 10.3390/ijms25168665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a prevalent malignant tumor with rising medication resistance and mortality. Due to a dearth of specific and trustworthy biomarkers and therapeutic targets, pancreatic cancer early detection and treatment are still not at their best. Exosomal LncRNAs have been found to be plentiful and persistent within exosomes, and they are capable of functioning whether the exosomes are traveling to close or distant cells. Furthermore, increasing evidence suggests that exosomal LncRNA, identified as an oncogene or tumor suppressor-control the growth, metastasis, and susceptibility of pancreatic cancer to chemotherapy and radiation therapy. Promising prospects for both antitumor targets and diagnostic biomarkers are exosomal LncRNAs. The primary features of exosomal LncRNAs, their biological roles in the onset and progression of pancreatic cancer, and their potential as therapeutic targets and diagnostic molecular markers are outlined in this review.
Collapse
Affiliation(s)
| | | | | | | | - Yong Jin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
6
|
Kriebardis AG, Chardalias L, Damaskos C, Pouliakis A, Garmpis N, Fortis SP, Papailia A, Sideri C, Georgatzakou HT, Papageorgiou EG, Pittaras T, Tsourouflis G, Politou M, Papaconstantinou I, Dimitroulis D, Valsami S. Precision Oncology: Circulating Microvesicles as New Biomarkers in a Very Early Stage of Colorectal Cancer. Cancers (Basel) 2024; 16:1943. [PMID: 38792021 PMCID: PMC11119677 DOI: 10.3390/cancers16101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The release of microvesicles (MVs) is an essential phenomenon for inter-cellular signaling in health and disease. The role of MVs in cancer is multidimensional and includes cancer cell survival, proliferation, and invasion. In this prospective study, we analyzed MV levels in colorectal cancer patients and assessed the importance of MV release in early-stage colorectal cancer and survival. METHODS This study included 98 patients and 15 controls. The characterization of MVs from human plasma was performed by flow cytometry using monoclonal antibodies. RESULTS The levels of total MVs and MUC-1-positive, tissue factor (TF)-positive, and endothelial cell-derived MVs (EMVs) were statistically significantly higher in the colon cancer patients than in the controls (p < 0.001). Furthermore, the subgroup of patients with very early-stage colorectal cancer also had statistically significant differences in the levels of the abovementioned MVs compared to the controls (p < 0.01). Highly differentiated tumors had lower levels of MUC-1-positive MVs (p < 0.02), EMVs (p < 0.002), and EMV/TF combinations (p < 0.001) versus those with tumors with low/intermediate differentiation. CONCLUSIONS Our data demonstrate that the analysis of circulating MV levels in plasma could possibly become a tool for the early diagnosis of colon cancer at a very early stage of the disease.
Collapse
Affiliation(s)
- Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.G.K.); (S.P.F.); (H.T.G.); (E.G.P.)
| | - Leonidas Chardalias
- 2nd Department of Surgery, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (L.C.); (A.P.); (I.P.)
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 10679 Athens, Greece; (C.D.); (N.G.); (G.T.); (D.D.)
| | - Abraham Pouliakis
- Second Department of Pathology, “Attikon” University Hospital, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 10679 Athens, Greece; (C.D.); (N.G.); (G.T.); (D.D.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.G.K.); (S.P.F.); (H.T.G.); (E.G.P.)
| | - Aspasia Papailia
- 2nd Department of Surgery, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (L.C.); (A.P.); (I.P.)
| | - Christiana Sideri
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.S.); (T.P.); (M.P.)
| | - Hara T. Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.G.K.); (S.P.F.); (H.T.G.); (E.G.P.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.G.K.); (S.P.F.); (H.T.G.); (E.G.P.)
| | - Theodoros Pittaras
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.S.); (T.P.); (M.P.)
| | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 10679 Athens, Greece; (C.D.); (N.G.); (G.T.); (D.D.)
| | - Marianna Politou
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.S.); (T.P.); (M.P.)
| | - Ioannis Papaconstantinou
- 2nd Department of Surgery, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (L.C.); (A.P.); (I.P.)
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 10679 Athens, Greece; (C.D.); (N.G.); (G.T.); (D.D.)
| | - Serena Valsami
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (C.S.); (T.P.); (M.P.)
| |
Collapse
|