1
|
Reklewski W, Miśkowicz M, Augustyniak P. QRS Detector Performance Evaluation Aware of Temporal Accuracy and Presence of Noise. SENSORS (BASEL, SWITZERLAND) 2024; 24:1698. [PMID: 38475235 DOI: 10.3390/s24051698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/13/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024]
Abstract
Algorithms for QRS detection are fundamental in the ECG interpretive processing chain. They must meet several challenges, such as high reliability, high temporal accuracy, high immunity to noise, and low computational complexity. Unfortunately, the accuracy expressed by missed or redundant events statistics is often the only parameter used to evaluate the detector's performance. In this paper, we first notice that statistics of true positive detections rely on researchers' arbitrary selection of time tolerance between QRS detector output and the database reference. Next, we propose a multidimensional algorithm evaluation method and present its use on four example QRS detectors. The dimensions are (a) influence of detection temporal tolerance, tested for values between 8.33 and 164 ms; (b) noise immunity, tested with an ECG signal with an added muscular noise pattern and signal-to-noise ratio to the effect of "no added noise", 15, 7, 3 dB; and (c) influence of QRS morphology, tested on the six most frequently represented morphology types in the MIT-BIH Arrhythmia Database. The multidimensional evaluation, as proposed in this paper, allows an in-depth comparison of QRS detection algorithms removing the limitations of existing one-dimensional methods. The method enables the assessment of the QRS detection algorithms according to the medical device application area and corresponding requirements of temporal accuracy, immunity to noise, and QRS morphology types. The analysis shows also that, for some algorithms, adding muscular noise to the ECG signal improves algorithm accuracy results.
Collapse
Affiliation(s)
- Wojciech Reklewski
- Department of Metrology and Electronics, Biocybernetics ad Biomedical Engineering, AGH University of Krakow, 30-059 Krakow, Poland
| | - Marek Miśkowicz
- Department of Metrology and Electronics, Biocybernetics ad Biomedical Engineering, AGH University of Krakow, 30-059 Krakow, Poland
| | - Piotr Augustyniak
- Department of Metrology and Electronics, Biocybernetics ad Biomedical Engineering, AGH University of Krakow, 30-059 Krakow, Poland
| |
Collapse
|
2
|
Menon KM, Das S, Shervey M, Johnson M, Glicksberg BS, Levin MA. Automated electrocardiogram signal quality assessment based on Fourier analysis and template matching. J Clin Monit Comput 2023; 37:829-837. [PMID: 36464761 PMCID: PMC9734499 DOI: 10.1007/s10877-022-00948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
We developed and tested a novel template matching approach for signal quality assessment on electrocardiogram (ECG) data. A computational method was developed that uses a sinusoidal approximation to the QRS complex to generate a correlation value at every point of an ECG. The strength of this correlation can be numerically adapted into a 'score' for each segment of an ECG, which can be used to stratify signal quality. The algorithm was tested on lead II ECGs of intensive care unit (ICU) patients admitted to the Mount Sinai Hospital (MSH) from January to July 2020 and on records from the MIT BIH arrhythmia database. The algorithm was found to be 98.9% specific and 99% sensitive on test data from the MSH ICU patients. The routine performs in linear O(n) time and occupies O(1) heap space in runtime. This approach can be used to lower the burden of pre-processing in ECG signal analysis. Given its runtime (O(n)) and memory (O(1)) complexity, there are potential applications for signal quality stratification and arrhythmia detection in wearable devices or smartphones.
Collapse
Affiliation(s)
- Kartikeya M Menon
- Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Subrat Das
- Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark Shervey
- Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Johnson
- Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin S Glicksberg
- Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew A Levin
- Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Deng R, Gao Y, Huang X, Zhang L, Wu P. A research of the respiratory status detection method measured by abdominal rise and fall. Heliyon 2023; 9:e14728. [PMID: 37025774 PMCID: PMC10070090 DOI: 10.1016/j.heliyon.2023.e14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Respiratory activity is the most important basic life activity of human body, respiratory state detection is of great practical significance. Based on the characteristic of high correlation between the change of tidal volume and the change of abdominal displacement, a method of detecting respiratory status through abdominal displacement data is proposed. The method uses a gas pressure sensor to collect the tidal volume in the steady state of the subject once, which is used as the baseline data. The abdominal displacement data of the subject in the three breathing states of slow breathing, steady breathing and rapid breathing were collected with an acceleration sensor. The warp path distance between the lung and abdominal data in the three different states was calculated, this warp path distance together with the period extracted from the abdominal data is used as a two-dimensional feature and input to the support vector machine classifier. The experiments show that the accuracy of the classification results reaches 90.23%. The method only needs to measure the lung data once in smooth breathing state, and the subsequent continuous detection is achieved by measuring the displacement of the abdomen only. This method has the advantages of stable and reliable acquisition results, low implementation cost and simplified wearing method, and has high practicality.
Collapse
|
4
|
Goergen CJ, Tweardy MJ, Steinhubl SR, Wegerich SW, Singh K, Mieloszyk RJ, Dunn J. Detection and Monitoring of Viral Infections via Wearable Devices and Biometric Data. Annu Rev Biomed Eng 2022; 24:1-27. [PMID: 34932906 PMCID: PMC9218991 DOI: 10.1146/annurev-bioeng-103020-040136] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mounting clinical evidence suggests that viral infections can lead to detectable changes in an individual's normal physiologic and behavioral metrics, including heart and respiration rates, heart rate variability, temperature, activity, and sleep prior to symptom onset, potentially even in asymptomatic individuals. While the ability of wearable devices to detect viral infections in a real-world setting has yet to be proven, multiple recent studies have established that individual, continuous data from a range of biometric monitoring technologies can be easily acquired and that through the use of machine learning techniques, physiological signals and warning signs can be identified. In this review, we highlight the existing knowledge base supporting the potential for widespread implementation of biometric data to address existing gaps in the diagnosis and treatment of viral illnesses, with a particular focus on the many important lessons learned from the coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | | | - Steven R Steinhubl
- physIQ Inc., Chicago, Illinois, USA
- Scripps Research Translational Institute, La Jolla, California, USA
| | | | - Karnika Singh
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | - Jessilyn Dunn
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Abstract
Heart Rate Variability (HRV) evaluates the autonomic nervous system regulation and can be used as a monitoring tool in conditions such as cardiovascular diseases, neuropathies and sleep staging. It can be extracted from the electrocardiogram (ECG) and the photoplethysmogram (PPG) signals. Typically, the HRV is obtained from the ECG processing. Being the PPG sensor widely used in clinical setups for physiological parameters monitoring such as blood oxygenation and ventilatory rate, the question arises regarding the PPG adequacy for HRV extraction. There is not a consensus regarding the PPG being able to replace the ECG in the HRV estimation. This work aims to be a contribution to this research area by comparing the HRV estimation obtained from simultaneously acquired ECG and PPG signals from forty subjects. A peak detection method is herein introduced based on the Hilbert transform: Hilbert Double Envelope Method (HDEM). Two other peak detector methods were also evaluated: Pan-Tompkins and Wavelet-based. HRV parameters for time, frequency and the non-linear domain were calculated for each algorithm and the Pearson correlation, T-test and RMSE were evaluated. The HDEM algorithm showed the best overall results with a sensitivity of 99.07% and 99.45% for the ECG and the PPG signals, respectively. For this algorithm, a high correlation and no significant differences were found between HRV features and the gold standard, for the ECG and PPG signals. The results show that the PPG is a suitable alternative to the ECG for HRV feature extraction.
Collapse
|
6
|
Modak S, Abdel-Raheem E, Taha LY. A novel adaptive multilevel thresholding based algorithm for QRS detection. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Wearable IoTs and Geo-Fencing Based Framework for COVID-19 Remote Patient Health Monitoring and Quarantine Management to Control the Pandemic. ELECTRONICS 2021. [DOI: 10.3390/electronics10162035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epidemic disease of Severe Acute Respiratory Syndrome (SARS) called COVID-19 has become a more frequently active disease. Managing and monitoring COVID-19 patients is still a challenging issue for advanced technologies. The first and foremost critical issue in COVID-19 is to diagnose it timely and cut off the chain of transmission by isolating the susceptible and patients. COVID-19 spreads through close interaction and contact with an infected person. It has affected the entire world, and every country is facing the challenges of having adequate medical facilities along with the availability of medical staff in rural and urban areas that have a high number of patients due to the pandemic. Due to the invasive method of treatment, SARS-COVID is spreading swiftly. In this paper, we propose an intelligent health monitoring framework using wearable Internet of Things (IoT) and Geo-fencing for COVID-19 susceptible and patient monitoring, and isolation and quarantine management to control the pandemic. The proposed system consists of four layers, and each layer has different functionality: a wearable sensors layer, IoT gateway layer, cloud server layer, and client application layer for visualization and analysis. The wearable sensors layer consists of wearable biomedical and GPS sensors for physiological parameters, and GPS and Wi-Fi Received Signal Strength Indicator acquisition for health monitoring and user Geo-fencing. The IoT gateway layer provides a Bluetooth and Wi-Fi based wireless body area network and IoT environment for data transmission anytime and anywhere. Cloud servers use Raspberry Pi and ThingSpeak cloud for data analysis and web-based application layers for remote monitoring based on user consent. The susceptible and patient conditions, real-time sensor’s data, and Geo-fencing enables minimizing the spread through close interaction. The results show the effectiveness of the proposed framework.
Collapse
|
8
|
Classification of Obstructive Sleep Apnoea from single-lead ECG signals using convolutional neural and Long Short Term Memory networks. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Cardiomyopathy -induced arrhythmia classification and pre-fall alert generation using Convolutional Neural Network and Long Short-Term Memory model. EVOLUTIONARY INTELLIGENCE 2021. [DOI: 10.1007/s12065-020-00454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Prediction analytics of myocardial infarction through model-driven deep deterministic learning. Neural Comput Appl 2020. [DOI: 10.1007/s00521-019-04400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Mohd Apandi ZF, Ikeura R, Hayakawa S, Tsutsumi S. An Analysis of the Effects of Noisy Electrocardiogram Signal on Heartbeat Detection Performance. Bioengineering (Basel) 2020; 7:bioengineering7020053. [PMID: 32517214 PMCID: PMC7357458 DOI: 10.3390/bioengineering7020053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/23/2022] Open
Abstract
Heartbeat detection for ambulatory cardiac monitoring is more challenging as the level of noise and artefacts induced by daily-life activities are considerably higher than monitoring in a hospital setting. It is valuable to understand the relationship between the characteristics of electrocardiogram (ECG) noises and the beat detection performance in the cardiac monitoring system. For this purpose, three well-known algorithms for the beat detection process were re-implemented. The beat detection algorithms were validated using two types of ambulatory datasets, which were the ECG signal from the MIT-BIH Arrhythmia Database and the simulated noise-contaminated ECG signal with different intensities of baseline wander (BW), muscle artefact (MA) and electrode motion (EM) artefact from the MIT-BIH Noise Stress Test Database. The findings showed that signals contaminated with noise and artefacts decreased the potential of beat detection in ambulatory signal with the poorest performance noted for ECG signal affected by the EM artefacts. In conclusion, none of the algorithms was able to detect all QRS complexes without any false detection at the highest level of noise. The EM noise influenced the beat detection performance the most in comparison to the MA and BW noises that resulted in the highest number of misdetections and false detections.
Collapse
Affiliation(s)
- Ziti Fariha Mohd Apandi
- Graduate School of Engineering, Mie University, Mie 514-8507, Japan
- Correspondence: ; Tel.: +81-90-8312-4809
| | - Ryojun Ikeura
- Department of Mechanical Engineering, Graduate School of Engineering, Mie University, Mie 514-8507, Japan; (R.I.); (S.H.); (S.T.)
| | - Soichiro Hayakawa
- Department of Mechanical Engineering, Graduate School of Engineering, Mie University, Mie 514-8507, Japan; (R.I.); (S.H.); (S.T.)
| | - Shigeyoshi Tsutsumi
- Department of Mechanical Engineering, Graduate School of Engineering, Mie University, Mie 514-8507, Japan; (R.I.); (S.H.); (S.T.)
| |
Collapse
|
12
|
Skin Lesion Segmentation Using Image Bit-Plane Multilayer Approach. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The establishment of automatic diagnostic systems able to detect and classify skin lesions at the initial stage are getting really relevant and effective in providing support for medical personnel during clinical assessment. Image segmentation has a determinant part in computer-aided skin lesion diagnosis pipeline because it makes possible to extract and highlight information on lesion contour texture as, for example, skewness and area unevenness. However, artifacts, low contrast, indistinct boundaries, and different shapes and areas contribute to make skin lesion segmentation a challenging task. In this paper, a fully automatic computer-aided system for skin lesion segmentation in dermoscopic images is indicated. Adopting this method, noise and artifacts are initially reduced by the singular value decomposition; afterward lesion decomposition into a frame of bit-plane layers is performed. A specific procedure is implemented for redundant data reduction using simple Boolean operators. Since lesion and background are rarely homogeneous regions, the obtained segmentation region could contain some disjointed areas classified as lesion. To obtain a single zone classified as lesion avoiding spurious pixels or holes inside the image under test, mathematical morphological techniques are implemented. The performance obtained highlights the method validity.
Collapse
|
13
|
An Automatic Diagnosis of Arrhythmias Using a Combination of CNN and LSTM Technology. ELECTRONICS 2020. [DOI: 10.3390/electronics9010121] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Electrocardiogram (ECG) signal evaluation is routinely used in clinics as a significant diagnostic method for detecting arrhythmia. However, it is very labor intensive to externally evaluate ECG signals, due to their small amplitude. Using automated detection and classification methods in the clinic can assist doctors in making accurate and expeditious diagnoses of diseases. In this study, we developed a classification method for arrhythmia based on the combination of a convolutional neural network and long short-term memory, which was then used to diagnose eight ECG signals, including a normal sinus rhythm. The ECG data of the experiment were derived from the MIT-BIH arrhythmia database. The experimental method mainly consisted of two parts. The input data of the model were two-dimensional grayscale images converted from one-dimensional signals, and detection and classification of the input data was carried out using the combined model. The advantage of this method is that it does not require performing feature extraction or noise filtering on the ECG signal. The experimental results showed that the implemented method demonstrated high classification performance in terms of accuracy, specificity, and sensitivity equal to 99.01%, 99.57%, and 97.67%, respectively. Our proposed model can assist doctors in accurately detecting arrhythmia during routine ECG screening.
Collapse
|
14
|
Tejedor J, García CA, Márquez DG, Raya R, Otero A. Multiple Physiological Signals Fusion Techniques for Improving Heartbeat Detection: A Review. SENSORS 2019; 19:s19214708. [PMID: 31671921 PMCID: PMC6864881 DOI: 10.3390/s19214708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 01/26/2023]
Abstract
This paper presents a review of the techniques found in the literature that aim to achieve a robust heartbeat detection from fusing multi-modal physiological signals (e.g., electrocardiogram (ECG), blood pressure (BP), artificial blood pressure (ABP), stroke volume (SV), photoplethysmogram (PPG), electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG), among others). Techniques typically employ ECG, BP, and ABP, of which usage has been shown to obtain the best performance under challenging conditions. SV, PPG, EMG, EEG, and EOG signals can help increase performance when included within the fusion. Filtering, signal normalization, and resampling are common preprocessing steps. Delay correction between the heartbeats obtained over some of the physiological signals must also be considered, and signal-quality assessment to retain the best signal/s must be considered as well. Fusion is usually accomplished by exploiting regularities in the RR intervals; by selecting the most promising signal for the detection at every moment; by a voting process; or by performing simultaneous detection and fusion using Bayesian techniques, hidden Markov models, or neural networks. Based on the results of the review, guidelines to facilitate future comparison of the performance of the different proposals are given and promising future lines of research are pointed out.
Collapse
Affiliation(s)
- Javier Tejedor
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain.
| | - Constantino A García
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain.
| | - David G Márquez
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain.
| | - Rafael Raya
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain.
| | - Abraham Otero
- Department of Information Technology, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Campus Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain.
| |
Collapse
|
15
|
Efficient Detection of Ventricular Late Potentials on ECG Signals Based on Wavelet Denoising and SVM Classification. INFORMATION 2019. [DOI: 10.3390/info10110328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The analysis of cardiac signals is still regarded as attractive by both the academic community and industry because it helps physicians in detecting abnormalities and improving the diagnosis and therapy of diseases. Electrocardiographic signal processing for detecting irregularities related to the occurrence of low-amplitude waveforms inside the cardiac signal has a considerable workload as cardiac signals are heavily contaminated by noise and other artifacts. This paper presents an effective approach for the detection of ventricular late potential occurrences which are considered as markers of sudden cardiac death risk. Three stages characterize the implemented method which performs a beat-to-beat processing of high-resolution electrocardiograms (HR-ECG). Fifteen lead HR-ECG signals are filtered and denoised for the improvement of signal-to-noise ratio. Five features were then extracted and used as inputs of a classifier based on a machine learning approach. For the performance evaluation of the proposed method, a HR-ECG database consisting of real ventricular late potential (VLP)-negative and semi-simulated VLP-positive patterns was used. Experimental results show that the implemented system reaches satisfactory performance in terms of sensitivity, specificity accuracy, and positive predictivity; in fact, the respective values equal to 98.33%, 98.36%, 98.35%, and 98.52% were achieved.
Collapse
|
16
|
Marginal Component Analysis of ECG Signals for Beat-to-Beat Detection of Ventricular Late Potentials. ELECTRONICS 2019. [DOI: 10.3390/electronics8091000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heart condition diagnosis based on electrocardiogram signal analysis is the basic method used in prevention of cardiovascular diseases, which are recognized as the leading cause of death globally. To anticipate the occurrence of ventricular arrhythmia, the detection of Ventricular Late Potentials (VLPs) is clinically worthwhile. VLPs are low-amplitude and high-frequency signals appearing at the end part of QRS complexes in the electrocardiogram, which can be considered as a robust feature for arrhythmia risk stratification in patients with cardiac diseases. This paper proposes a beat-to-beat VLP detection method based on the the marginal component analysis and investigates its performance taking into account different ratios between QRS and VLP power. After a denoising phase, performed adopting the singular vector decomposition technique, heartbeats characterized by VLP onsets are identified and extracted taking into account the vector magnitude of each high resolution ECG (HR-ECG) record. To evaluate the proposed method performance, a 15-lead HR-ECG database consisting of real VLP-negative and simulated VLP-positive patterns was used. The achieved results highlight the method validity for VLP detection.
Collapse
|
17
|
Abstract
Artificial intelligence is changing the healthcare industry from many perspectives: diagnosis, treatment, and follow-up. A wide range of techniques has been proposed in the literature. In this special issue, 13 selected and peer-reviewed original research articles contribute to the application of artificial intelligence (AI) approaches in various real-world problems. Papers refer to the following main areas of interest: feature selection, high dimensionality, and statistical approaches; heart and cardiovascular diseases; expert systems and e-health platforms.
Collapse
|