1
|
Baral D, Bhattarai A, Chaudhary NK. Aquifer pollution by metal-antibiotic complexes: Origins, transport dynamics, and ecological impacts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117390. [PMID: 39579446 DOI: 10.1016/j.ecoenv.2024.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Aquifer pollution by metal-antibiotic complexes is a rising environmental and public health concern owing to their enhanced mobility and persistence in groundwater. The purpose of this review is to examine the origins, transport dynamics, and ecological impacts of complexes formed through interactions between metal ions and antibiotics in agricultural runoff, pharmaceutical effluents, and wastewater discharge. Metal-antibiotic complexes are more resistant to degradation and are more soluble than their components. This complicates the conventional water purification efforts. These complexes disrupt microbial ecosystems, facilitate the spread of antibiotic-resistance genes, and negatively affect aquatic organisms. The entry of pollutants into drinking water sources poses notable health risks, including chronic exposure to contaminants and the emergence of antibiotic-resistant pathogens. This review emphasizes both preventative and remedial strategies to mitigate these impacts. Preventative measures emphasize the regulation of antibiotic and metal use in agriculture and industry and promote green chemistry alternatives. Remediation approaches include advanced treatment technologies such as membrane filtration, oxidation, and bioremediation. Integrated management practices and ongoing monitoring were discussed to address this complex issue. To protect water quality and public health, metal-antibiotic complexes in aquifers require stringent regulatory measures, innovative treatment solutions, and heightened public awareness. This review highlights the importance of coordinated efforts to prevent and remediate the emerging pollution problem.
Collapse
Affiliation(s)
- Dipak Baral
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, (Tribhuvan University), Biratnagar, Nepal
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, (Tribhuvan University), Biratnagar, Nepal
| | - Narendra Kumar Chaudhary
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, (Tribhuvan University), Biratnagar, Nepal.
| |
Collapse
|
2
|
Narciso A, Grenni P, Spataro F, De Carolis C, Rauseo J, Patrolecco L, Garbini GL, Rolando L, Iannelli MA, Bustamante MA, Alvarez-Alonso C, Barra Caracciolo A. Effects of sulfamethoxazole and copper on the natural microbial community from a fertilized soil. Appl Microbiol Biotechnol 2024; 108:516. [PMID: 39540947 PMCID: PMC11564247 DOI: 10.1007/s00253-024-13324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Cattle manure or its digestate, which often contains antibiotic residues, can be used as an organic fertilizer and copper (Cu) as a fungicide in agriculture. Consequently, both antibiotics and Cu are considered soil contaminants. In this work, microcosms were performed with soil amended with either manure or digestate with Cu and an antibiotic (sulfamethoxazole, SMX) co-presence and the planting of Lactuca sativa. After the addition of the organic amendments, a prompt increase in the microbial activity and at the same time of the sul1 and intI1 genes was observed, although ARGs generally decreased over time. In the amended and spiked microcosms, the microbial community was able to remove more than 99% of SMX in 36 days and the antibiotic did not bioaccumulate in the lettuce. Interestingly, where Cu and SMX were co-present, ARGs (particularly sul2) increased, showing how copper had a strong effect on resistance persistence in the soil. Copper also had a detrimental effect on the plant-microbiome system, affecting plant biomass and microbial activity in all conditions except in a digestate presence. When adding digestate microbial activity, biodiversity and lettuce biomass increased, with or without copper present. Not only did the microbial community favour plant growth, but lettuce also positively influenced its composition by increasing bacterial diversity and classes (e.g., Alphaproteobacteria) and genera (e.g., Bacillus), thus indicating a good-quality soil. KEY POINTS: • Cattle digestate promoted the highest microbial activity, diversity, and plant growth • Cattle digestate counteracted detrimental contaminant effects • Cu presence promoted antibiotic cross-resistance in soil.
Collapse
Affiliation(s)
- Alessandra Narciso
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
- Department of Ecological and Biological Sciences, Tuscia University, 01100, Viterbo, Italy
| | - Paola Grenni
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesca Spataro
- National Biodiversity Future Center (NBFC), Palermo, Italy.
- Institute of Polar Sciences-National Research Council (ISP-CNR), Montelibretti, 00010, Rome, Italy.
| | - Chiara De Carolis
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, 00185, Rome, Italy
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Montelibretti, 00010, Rome, Italy
| | - Jasmin Rauseo
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Institute of Polar Sciences-National Research Council (ISP-CNR), Montelibretti, 00010, Rome, Italy
| | - Luisa Patrolecco
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Institute of Polar Sciences-National Research Council (ISP-CNR), Montelibretti, 00010, Rome, Italy
| | - Gian Luigi Garbini
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
| | - Ludovica Rolando
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
| | | | - Maria Angeles Bustamante
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Orihuela, 03312, Alicante, Spain
| | - Cristina Alvarez-Alonso
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Orihuela, 03312, Alicante, Spain
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
| |
Collapse
|
3
|
Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, Makeri D, Lukwago TW, Mutuku IM, Mwesigwa A, Baguma A, Adebayo IA. Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs. Biometals 2024:10.1007/s10534-024-00647-5. [PMID: 39446237 DOI: 10.1007/s10534-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
In recent years, antimicrobial resistance (AMR) has become an alarming threat to global health as notable increase in morbidity and mortality has been ascribed to the emergence of superbugs. The increase in microbial resistance because of harboured or inherited resistomes has been complicated by the lack of new and effective antimicrobial agents, as well as misuse and failure of existing ones. These problems have generated severe and growing public health concern, due to high burden of bacterial infections resulting from scarce financial resources and poor functioning health systems, among others. It is therefore, highly pressing to search for novel and more efficacious alternatives for combating the action of these super bacteria and their infection. The application of metallic nanoparticles (MNPs) with their distinctive physical and chemical attributes appears as promising tools in fighting off these deadly superbugs. The simple, inexpensive and eco-friendly model for enhanced biologically inspired MNPs with exceptional antimicrobial effect and diverse mechanisms of action againsts multiple cell components seems to offer the most promising option and said to have enticed many researchers who now show tremendous interest. This synopsis offers critical discussion on application of MNPs as the foremost intervening strategy to curb the menace posed by the spread of superbugs. As such, this review explores how antimicrobial properties of the metallic nanoparticles which demonstrated considerable efficacy against several multi-drugs resistant bacteria, could be adopted as promising approach in subduing the threat of AMR and harvoc resulting from the spread of superbugs.
Collapse
Affiliation(s)
- Naheem Adekilekun Tijani
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abdullateef Opeyemi Afolabi
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Danladi Makeri
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Tonny Wotoyitide Lukwago
- Department of Pharmacology and Toxicology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Irene M Mutuku
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Alex Mwesigwa
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Andrew Baguma
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | | |
Collapse
|
4
|
Gaudreau A, Watson DW, Flannagan RS, Roy P, Shen C, Abdelmoneim A, Beavers WN, Gillies ER, El-Halfawy OM, Heinrichs DE. Mechanistic insights and in vivo efficacy of thiosemicarbazones against methicillin-resistant Staphylococcus aureus. J Biol Chem 2024; 300:107689. [PMID: 39159815 PMCID: PMC11492055 DOI: 10.1016/j.jbc.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Staphylococcus aureus poses a significant threat in both community and hospital settings due to its infective and pathogenic nature combined with its ability to resist the action of chemotherapeutic agents. Methicillin-resistant S. aureus (MRSA) represents a critical challenge. Metal-chelating thiosemicarbazones (TSCs) have shown promise in combating MRSA and while previous studies hinted at the antimicrobial potential of TSCs, their mechanisms of action against MRSA are still under investigation. We screened a chemical library for anti-staphylococcal compounds and identified a potent molecule named R91 that contained the NNSN structural motif found within TSCs. We identified that R91 and several structural analogs exhibited antimicrobial activity against numerous S. aureus isolates as well as other Gram-positive bacteria. RNAseq analysis revealed that R91 induces copper and oxidative stress responses. Checkerboard assays demonstrated synergy of R91 with copper, nickel, and zinc. Mutation of the SrrAB two-component regulatory system sensitizes S. aureus to R91 killing, further linking the oxidative stress response to R91 resistance. Moreover, R91 was found to induce hydrogen peroxide production, which contributed to its antimicrobial activity. Remarkably, no mutants with elevated R91 resistance were identified, despite extensive attempts. We further demonstrate that R91 can be used to effectively treat an intracellular reservoir of S. aureus in cell culture and can reduce bacterial burdens in a murine skin infection model. Combined, these data position R91 as a potent TSC effective against MRSA and other Gram-positive bacteria, with implications for future therapeutic development.
Collapse
Affiliation(s)
- Avery Gaudreau
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - David W Watson
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Ronald S Flannagan
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Paroma Roy
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Chenfangfei Shen
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA; Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University, Baton Rouge, Louisiana, USA
| | - William N Beavers
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada; Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - David E Heinrichs
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|