1
|
Zhao G, Chen T, Tang A, Yang H. Roles of Oxygen-Containing Functional Groups in Carbon for Electrocatalytic Two-Electron Oxygen Reduction Reaction. Chemistry 2024; 30:e202304065. [PMID: 38487973 DOI: 10.1002/chem.202304065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 04/05/2024]
Abstract
Recent years have witnessed great research interests in developing high-performance electrocatalysts for the two-electron (2e-) oxygen reduction reaction (ORR) that enables the sustainable and flexible synthesis of H2O2. Carbon-based electrocatalysts exhibit attractive catalytic performance for the 2e- ORR, where oxygen-containing functional groups (OFGs) play a decisive role. However, current understanding is far from adequate, and the contribution of OFGs to the catalytic performance remains controversial. Therefore, a critical overview on OFGs in carbon-based electrocatalysts toward the 2e- ORR is highly desirable. Herein, we go over the methods for constructing OFGs in carbon including chemical oxidation, electrochemical oxidation, and precursor inheritance. Then we review the roles of OFGs in activating carbon toward the 2e- ORR, focusing on the intrinsic activity of different OFGs and the interplay between OFGs and metal species or defects. At last, we discuss the reasons for inconsistencies among different studies, and personal perspectives on the future development in this field are provided. The results provide insights into the origin of high catalytic activity and selectivity of carbon-based electrocatalysts toward the 2e- ORR and would provide theoretical foundations for the future development in this field.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
| | - Tianci Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan, 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| |
Collapse
|
2
|
Li Y, Li R, Liu BH, Li ZP. Coupling homogeneous and heterogeneous catalysis for enhancement of HCOOH electrooxidation via the dehydrogenation pathway. Chem Commun (Camb) 2023; 59:2501-2504. [PMID: 36753119 DOI: 10.1039/d2cc05955j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The homogeneous/heterogeneous catalyst combination of VO2+ in anolyte with Pd/C at the anode is first introduced in a formic acid fuel cell to enhance HCOOH electrooxidation. The VO2+/Pd catalyst combination establishes a stepwise reaction pathway involving HCOOH dehydrogenation to form V3+ from VO2+ reduction and subsequent V3+ electrooxidation to regain VO2+. The fuel cell with the VO2+/Pd combination presents a peak power density of 341.3 mW cm-2 and stable power density higher than 30 mW cm-2.
Collapse
Affiliation(s)
- Yan Li
- College of Chemical & Biological Engineering, Zhejiang University, Hangzhou, China.
| | - Rui Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, USA.,Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Bin Hong Liu
- College of Materials Science & Engineering, Zhejiang University, Hangzhou, China.
| | - Zhou Peng Li
- College of Chemical & Biological Engineering, Zhejiang University, Hangzhou, China. .,Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Orzari LO, Assumpção MHMT, Nandenha J, Neto AO, Junior LHM, Bergamini M, Janegitz BC. Pd, Ag and Bi carbon-supported electrocatalysts as electrochemical multifunctional materials for ethanol oxidation and dopamine determination. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Mustafa A, Shuai Y, Lougou BG, Wang Z, Razzaq S, Zhao J, Shan J. Progress and perspective of electrochemical CO2 reduction on Pd-based nanomaterials. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
GUNJI T. Preparation of Ordered Intermetallic Compounds and Their Application in Electrocatalytic Reactions. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Takao GUNJI
- Department of Material and Life Chemistry, Kanagawa University
| |
Collapse
|
6
|
Al Najjar T, Ahmed N, El Sawy EN. Mechanistic effects of blending formic acid with ethanol on Pd activity towards formic acid oxidation in acidic media. RSC Adv 2021; 11:22842-22848. [PMID: 35480453 PMCID: PMC9034384 DOI: 10.1039/d1ra01209f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022] Open
Abstract
The direct formic acid fuel cell (DFAFC) is one of the most promising direct liquid fuel cells. Pd is the most active catalyst towards formic oxidation, however, it suffers from CO-like poisoning and instability in acidic media. Blending formic acid with ethanol is known to synergistically enhance the Pt catalytic activity of Pt. However, it has not been studied in the case of Pd. In this study, ethanol/formic acid blends were tested, aiming at understanding the effect of ethanol on the formic acid oxidation mechanism at Pd and how the direct and indirect pathways could be affected. The blends consisted of different formic acid (up to 4 M) and ethanol (up to 0.5 M) concentrations. The catalytic activity of a 40% Pd/C catalyst was tested in 0.1 M H2SO4 + XFA + YEtOH using cyclic voltammetry, while the catalyst resistance to poisoning in the presence and absence of ethanol was tested using chronopotentiometry. The use of these blends is found to not only eliminate the indirect pathway but also slowly decrease the direct pathway activity too. That is believed to be due to the different ethanol adsorption orientations at different potentials. This study should open the door for further studying the oxidation of FA/ethanol blends using different pHs and different Pd-based catalysts.
Collapse
Affiliation(s)
- Taher Al Najjar
- Department of Chemistry, School of Science and Engineering, The American University in Cairo Cairo Egypt 11835
| | - Nashaat Ahmed
- Department of Chemistry, School of Science and Engineering, The American University in Cairo Cairo Egypt 11835
| | - Ehab N El Sawy
- Department of Chemistry, School of Science and Engineering, The American University in Cairo Cairo Egypt 11835
| |
Collapse
|
7
|
Nguyen MTX, Nguyen MK, Pham PTT, Huynh HKP, Pham HH, Vo CC, Nguyen ST. High-performance Pd-coated Ni nanowire electrocatalysts for alkaline direct ethanol fuel cells. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Goswami C, Saikia H, Jyoti Borah B, Jyoti Kalita M, Tada K, Tanaka S, Bharali P. Boosting the electrocatalytic activity of Pd/C by Cu alloying: Insight on Pd/Cu composition and reaction pathway. J Colloid Interface Sci 2021; 587:446-456. [PMID: 33383434 DOI: 10.1016/j.jcis.2020.11.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Tuning composition of Pd-based bimetallic electrocatalysts of high stability and durability is of great importance in energy-related reactions. This study reports the remarkable electrocatalytic performance of carbon-supported bimetallic Pd-Cu alloy nanoparticles (NPs) towards formic acid oxidation (FAO) and oxygen reduction reaction (ORR). Among various bimetallic compositions, Pd3Cu/C alloy NPs exhibits the best FAO and ORR activity. During FAO reaction, Pd3Cu/C alloy NPs exhibits a peak with a current density of 28.33 mA cm-2 and a potential of 0.2 V (vs. Ag/AgCl) which is higher than that of the other PdCu compositions and standard 20 wt% Pd/C catalyst. Meanwhile, the onset potential (-0.09 V), half-wave potential (-0.18 V), limiting current density at 1600 rpm (-4.9 mA cm-2) and Tafel slope (64 mV dec-1) values of Pd3Cu/C alloy NPs validate its superiority over the conventional 20 wt% Pt/C catalyst for ORR. Experimental and DFT studies have confirmed that the enhanced activity can be attributed to the electronic effect that arises after Cu alloying which causes a downshift of Pd d-band center and structural effect that produces highly dispersed NPs over the carbon matrix with high electrochemically active surface area.
Collapse
Affiliation(s)
- Chiranjita Goswami
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India
| | - Himadri Saikia
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India; Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785 006, Assam, India
| | - Biraj Jyoti Borah
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India
| | - Manash Jyoti Kalita
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India
| | - Kohei Tada
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Japan
| | - Shingo Tanaka
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Japan
| | - Pankaj Bharali
- Department of Chemical Sciences, Tezpur University, Tezpur, Napaam 784 028, Assam, India.
| |
Collapse
|
9
|
Sarac B, Karazehir T, Ivanov YP, Putz B, Greer AL, Sarac AS, Eckert J. Effective electrocatalytic methanol oxidation of Pd-based metallic glass nanofilms. NANOSCALE 2020; 12:22586-22595. [PMID: 33135022 DOI: 10.1039/d0nr06372j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Compared to their conventional polycrystalline Pd counterparts, Pd79Au9Si12 (at%) - metallic glass (MG) nanofilm (NF) electrocatalysts offer better methanol oxidation reaction (MOR) in alkaline medium, CO poisoning tolerance and catalyst stability even at high scan rates or high methanol concentrations owing to their amorphous structure without grain boundaries. This study evaluates the influence of scan rate and methanol concentration by cyclic voltammetry, frequency-dependent electrochemical impedance spectroscopy and a related equivalent circuit model at different potentials in Pd-Au-Si amorphous NFs. Structural and compositional differences for the NFs are assessed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), energy dispersive X-ray (EDX) mapping and X-ray diffraction (XRD). The ratio of the forward to reverse peak current density ipf/ipb for the MG NFs is ∼2.2 times higher than for polycrystalline Pd NFs, evidencing better oxidation of methanol to carbon dioxide in the forward scan and less poisoning of the electrocatalysts by carbonaceous (e.g. CO, HCO) species. Moreover, the electrochemical circuit model obtained from EIS measurements reveals that the MOR occurring around -100 mV increases the capacitance without any significant change in oxidation resistance, whereas CO2 formation towards lower potentials results in a sharp increase in the capacitance of the Faradaic MOR at the catalyst interface and a slight decrease in the corresponding resistance. These results, together with the high ipf/ipb = 3.37 yielding the minimum amount of carbonaceous species deposited on the thin film during cyclic voltammetry and stability in the alkaline environment, can potentially make these amorphous thin films potential candidates for fuel-cell applications.
Collapse
Affiliation(s)
- Baran Sarac
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, 8700 Leoben, Austria.
| | | | | | | | | | | | | |
Collapse
|