1
|
Figueiredo Prates LH, Fiebig J, Schlosser H, Liapi E, Rehling T, Lutrat C, Bouyer J, Sun Q, Wen H, Xi Z, Schetelig MF, Häcker I. Challenges of Robust RNAi-Mediated Gene Silencing in Aedes Mosquitoes. Int J Mol Sci 2024; 25:5218. [PMID: 38791257 PMCID: PMC11121262 DOI: 10.3390/ijms25105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we report the complexities and challenges associated with achieving robust RNA interference (RNAi)-mediated gene knockdown in the mosquitoes Aedes aegypti and Aedes albopictus, a pivotal approach for genetic analysis and vector control. Despite RNAi's potential for species-specific gene targeting, our independent efforts to establish oral delivery of RNAi for identifying genes critical for mosquito development and fitness encountered significant challenges, failing to reproduce previously reported potent RNAi effects. We independently evaluated a range of RNAi-inducing molecules (siRNAs, shRNAs, and dsRNAs) and administration methods (oral delivery, immersion, and microinjection) in three different laboratories. We also tested various mosquito strains and utilized microorganisms for RNA delivery. Our results reveal a pronounced inconsistency in RNAi efficacy, characterized by minimal effects on larval survival and gene expression levels in most instances despite strong published effects for the tested targets. One or multiple factors, including RNase activity in the gut, the cellular internalization and processing of RNA molecules, and the systemic dissemination of the RNAi signal, could be involved in this variability, all of which are barely understood in mosquitoes. The challenges identified in this study highlight the necessity for additional research into the underlying mechanisms of mosquito RNAi to develop more robust RNAi-based methodologies. Our findings emphasize the intricacies of RNAi application in mosquitoes, which present a substantial barrier to its utilization in genetic control strategies.
Collapse
Affiliation(s)
- Lucas Henrique Figueiredo Prates
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | - Jakob Fiebig
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | - Henrik Schlosser
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | - Eleni Liapi
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Tanja Rehling
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | | | - Jeremy Bouyer
- ASTRE, CIRAD, 34398 Montpellier, France (J.B.)
- ASTRE, CIRAD, INRAE, Univ. Montpellier, Plateforme Technologique CYROI, 97491 Sainte-Clotilde, La Réunion, France
| | - Qiang Sun
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (Q.S.); (H.W.); (Z.X.)
| | - Han Wen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (Q.S.); (H.W.); (Z.X.)
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (Q.S.); (H.W.); (Z.X.)
| | - Marc F. Schetelig
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| | - Irina Häcker
- Department of Insect Biotechnology in Plant Protection, Justus Liebig University Giessen, 35394 Giessen, Germany; (L.H.F.P.); (J.F.); (H.S.); (T.R.); (I.H.)
| |
Collapse
|
2
|
Zhang N, Feng S, Duan S, Yin Y, Ullah H, Li H, Davaasambuu U, Wei S, Nong X, Zhang Z, Tu X, Wang G. LmFKBP24 interacts with LmEaster to inhibit the antifungal immunity of Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105515. [PMID: 37666582 DOI: 10.1016/j.pestbp.2023.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 09/06/2023]
Abstract
Locusta migratoria is one of the most destructive pests that threaten crop growth and food production security in China. Metarhizium anisopliae has been widely used to control locusts around the world. Previous laboratory studies have revealed that LmFKBP24 is significantly upregulated after M. anisopliae infection, suggesting that it may play a role in immune regulation, yet the mechanism remains largely unknown. To gain further insight, we conducted an RNA interference (RNAi) study to investigate the function of LmFKBP24 in the regulation of antifungal immunity and analyzed the expression patterns of immune-induced genes. Our research revealed that LmFKBP24 is activated and upregulated when locusts are infected by M. anisopliae, and it inhibits the expression of antimicrobial peptide (AMP) defensin in the downstream of Toll pathway by combining with LmEaster rather than LmCyPA, thus exerting an immunosuppressive effect. To further investigate this, we conducted yeast two-hybrid (Y2H) and pull down assays to identify the proteins interacting with LmFKBP24. Our results provided compelling evidence for revealing the immune mechanism of L. migratoria and uncovered an innovative target for the development of new biological pesticides. Furthermore, our research indicates that LmFKBP24 interacts with LmEaster through its intact structure, providing a strong foundation for further exploration.
Collapse
Affiliation(s)
- Neng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China
| | - Shiqian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Saiya Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yiting Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Anbar-Swabi 23561, Khyber Pakhtunkhwa, Pakistan
| | - Hongmei Li
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Undarmaa Davaasambuu
- School of Agroecology, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Shuhua Wei
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China.
| |
Collapse
|
3
|
Zhang N, Feng S, Tian Y, Zhuang L, Cha G, Duan S, Li H, Nong X, Zhang Z, Tu X, Wang G. Identification, characterization and spatiotemporal expression analysis of the FKBP family genes in Locusta migratoria. Sci Rep 2023; 13:4048. [PMID: 36899085 PMCID: PMC10006077 DOI: 10.1038/s41598-023-30889-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
FK506 binding proteins (FKBPs) are a highly-conserved group of proteins known to bind to FK506, an immunosuppressive drug. They play different physiological roles, including transcription regulation, protein folding, signal transduction and immunosuppression. A number of FKBP genes have been identified in eukaryotes; however, very little information about these genes has been reported in Locusta migratoria. Here, we identified and characterized 10 FKBP genes from L. migratoria. Phylogenetic analysis and comparison of domain architectures indicated that the LmFKBP family can be divided into two subfamilies and five subclasses. Developmental and tissue expression pattern analysis revealed that all LmFKBPs transcripts, including LmFKBP46, LmFKBP12, LmFKBP47, LmFKBP79, LmFKBP16, LmFKBP24, LmFKBP44b, LmFKBP53, were periodically expressed during different developmental stages and mainly expressed in the fat body, hemolymph, testis, and ovary. In brief, our work depicts a outline but panoramic picture of LmFKBP family in L. migratoria, and provides a solid foundation to further investigate the molecular functions of LmFKBPs.
Collapse
Affiliation(s)
- Neng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, 026000, China
| | - Shiqian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ye Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ling Zhuang
- Bayannur Forestry and Grassland Development Center, Bayannur, 015000, China
| | - Gan Cha
- Bayannur Forestry and Grassland Development Center, Bayannur, 015000, China
| | - Saiya Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongmei Li
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, 026000, China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, 026000, China.
| |
Collapse
|
4
|
Leitner M, Etebari K, Asgari S. Transcriptional response of Wolbachia-transinfected Aedes aegypti mosquito cells to dengue virus at early stages of infection. J Gen Virol 2022; 103:001694. [PMID: 35006065 PMCID: PMC8895618 DOI: 10.1099/jgv.0.001694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne flaviviruses are responsible for viral infections and represent a considerable public health burden. Aedes aegypti is the principal vector of dengue virus (DENV), therefore understanding the intrinsic virus-host interactions is vital, particularly in the presence of the endosymbiont Wolbachia, which blocks virus replication in mosquitoes. Here, we examined the transcriptional response of Wolbachia-transinfected Ae. aegypti Aag2 cells to DENV infection. We identified differentially expressed immune genes that play a key role in the activation of anti-viral defence such as the Toll and immune deficiency pathways. Further, genes encoding cytosine and N6-adenosine methyltransferases and SUMOylation, involved in post-transcriptional modifications, an antioxidant enzyme, and heat-shock response were up-regulated at the early stages of DENV infection and are reported here for the first time. Additionally, several long non-coding RNAs were among the differentially regulated genes. Our results provide insight into Wolbachia-transinfected Ae. aegypti's initial virus recognition and transcriptional response to DENV infection.
Collapse
Affiliation(s)
- Michael Leitner
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Njoroge TM, Calla B, Berenbaum MR, Stone CM. Specific phytochemicals in floral nectar up-regulate genes involved in longevity regulation and xenobiotic metabolism, extending mosquito life span. Ecol Evol 2021; 11:8363-8380. [PMID: 34188892 PMCID: PMC8216986 DOI: 10.1002/ece3.7665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/06/2022] Open
Abstract
During nectar feeding, mosquitoes ingest a plethora of phytochemicals present in nectar. The ecological and physiological impacts of these ingested phytochemicals on the disease vectors are poorly understood. In this study, we evaluated the effects of three nectar phytochemicals-- caffeine, p-coumaric acid, and quercetin--on longevity, fecundity, and sugar-feeding behavior of the Asian tiger mosquito (Aedes albopictus). Adult females of Ae. albopictus were provided continuous access to 10% sucrose supplemented with one of the three phytochemicals and their fecundity, longevity, and the amount of sucrose consumed determined. Transcriptome response of Ae. albopictus females to p-coumaric acid and quercetin was also evaluated. Dietary quercetin and p-coumaric acid enhanced the longevity of female Ae. albopictus, while caffeine resulted in reduced sugar consumption and enhanced fecundity of gravid females. RNA-seq analyses identified 237 genes that were differentially expressed (DE) in mosquitoes consuming p-coumaric acid or quercetin relative to mosquitoes consuming an unamended sucrose solution diet. Among the DE genes, several encoding antioxidant enzymes, cytochrome P450s, and heat shock proteins were upregulated, whereas histones were downregulated. Overall, our findings show that consuming certain nectar phytochemicals can enhance adult longevity of female Asian tiger mosquitoes, apparently by differentially regulating the expression level of genes involved in longevity and xenobiotic metabolism; this has potential impacts not only on life span but also on vectorial capacity and insecticide resistance.
Collapse
Affiliation(s)
- Teresia M. Njoroge
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Bernarda Calla
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - May R. Berenbaum
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Christopher M. Stone
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Illinois Natural History SurveyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| |
Collapse
|