1
|
Ribeiro TP, Martins-de-Sa D, Macedo LLP, Lourenço-Tessutti IT, Ruffo GC, Sousa JPA, Rósario Santana JMD, Oliveira-Neto OB, Moura SM, Silva MCM, Morgante CV, Oliveira NG, Basso MF, Grossi-de-Sa MF. Cotton plants overexpressing the Bacillus thuringiensis Cry23Aa and Cry37Aa binary-like toxins exhibit high resistance to the cotton boll weevil (Anthonomus grandis). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112079. [PMID: 38588981 DOI: 10.1016/j.plantsci.2024.112079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The cotton boll weevil (CBW, Anthonomus grandis) stands as one of the most significant threats to cotton crops (Gossypium hirsutum). Despite substantial efforts, the development of a commercially viable transgenic cotton event for effective open-field control of CBW has remained elusive. This study describes a detailed characterization of the insecticidal toxins Cry23Aa and Cry37Aa against CBW. Our findings reveal that CBW larvae fed on artificial diets supplemented exclusively with Cry23Aa decreased larval survival by roughly by 69%, while supplementation with Cry37Aa alone displayed no statistical difference compared to the control. However, the combined provision of both toxins in the artificial diet led to mortality rates approaching 100% among CBW larvae (LC50 equal to 0.26 PPM). Additionally, we engineered transgenic cotton plants by introducing cry23Aa and cry37Aa genes under control of the flower bud-specific pGhFS4 and pGhFS1 promoters, respectively. Seven transgenic cotton events expressing high levels of Cry23Aa and Cry37Aa toxins in flower buds were selected for greenhouse bioassays, and the mortality rate of CBW larvae feeding on their T0 and T1 generations ranged from 75% to 100%. Our in silico analyses unveiled that Cry23Aa displays all the hallmark characteristics of β-pore-forming toxins (β-PFTs) that bind to sugar moieties in glycoproteins. Intriguingly, we also discovered a distinctive zinc-binding site within Cry23Aa, which appears to be involved in protein-protein interactions. Finally, we discuss the major structural features of Cry23Aa that likely play a role in the toxin's mechanism of action. In view of the low LC50 for CBW larvae and the significant accumulation of these toxins in the flower buds of both T0 and T1 plants, we anticipate that through successive generations of these transgenic lines, cotton plants engineered to overexpress cry23Aa and cry37Aa hold promise for effectively managing CBW infestations in cotton crops.
Collapse
Affiliation(s)
- Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Diogo Martins-de-Sa
- Department of Cellular Biology, University of Brasília, Brasília, DF 70910-900, Brazil; Genesilico Biotech, Brasília, DF 71503-508, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Gustavo Caseca Ruffo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - João Pedro Abreu Sousa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Julia Moura do Rósario Santana
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil
| | - Osmundo Brilhante Oliveira-Neto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Euroamerican University Center, Unieuro, Brasília, DF 70790-160, Brazil
| | - Stéfanie Menezes Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Embrapa Semi-Arid, Pretrolina, PE 56302-970, Brazil
| | - Nelson Geraldo Oliveira
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasília, DF 70770-917, Brazil; Graduate Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF 71966-700, Brazil; Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, MS 79117-900, Brazil.
| |
Collapse
|
2
|
Barbosa Rodrigues JD, Moreira RO, de Souza JAM, Desidério JA. Interaction of insecticidal proteins from Pseudomonas spp. and Bacillus thuringiensis for boll weevil management. PLoS One 2023; 18:e0294654. [PMID: 38033128 PMCID: PMC10688866 DOI: 10.1371/journal.pone.0294654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Cotton crop yields are largely affected by infestations of Anthonomus grandis, which is its main pest. Although Bacillus thuringiensis (Bt) derived proteins can limit insect pest infestations, the diverse use of control methods becomes a viable alternative in order to prolong the use of technology in the field. One of the alternative methods to Bt technology has been the utilization of certain Pseudomonas species highly efficient in controlling coleopteran insects have been used to produce highly toxic insecticidal proteins. This study aimed to evaluate the toxicity of IPD072Aa and PIP-47Aa proteins, isolated from Pseudomonas spp., in interaction with Cry1Ia10, Cry3Aa, and Cry8B proteins isolated from B. thuringiensis, to control A. grandis in cotton crops. The genes IPD072Aa and PIP-47Aa were synthesized and cloned into a pET-SUMO expression vector. Moreover, Cry1Ia10, Cry3Aa, and Cry8B proteins were obtained by inducing recombinant E. coli clones, which were previously acquired by our research group from the Laboratory of Bacteria Genetics and Applied Biotechnology (LGBBA). These proteins were visualized in SDS-PAGE, quantified, and incorporated into an artificial diet to estimate their lethal concentrations (LC) through individual or combined bioassays. The results of individual toxicity revealed that IPD072Aa, PIP-47Aa, Cry1Ia10, Cry3Aa, and Cry8B were efficient in controlling A. grandis, with the latter being the most toxic. Regarding interaction assays, a high synergistic interaction was observed between Cry1Ia10 and Cry3Aa. All interactions involving Cry3Aa and PIP-47Aa, when combined with other proteins, showed a clear synergistic effect. Our findings highlighted that the tested proteins in combination, for the most part, increase toxicity against A. grandis neonate larvae, suggesting possible constructions for pyramiding cotton plants to the manage and the control boll weevils.
Collapse
Affiliation(s)
- Jardel Diego Barbosa Rodrigues
- Biology Department, Faculty of Agrarian and Veterinary Sciences (Jaboticabal Campus), São Paulo State University (UNESP), São Paulo, Brazil
| | - Raquel Oliveira Moreira
- Biology Department, Faculty of Agrarian and Veterinary Sciences (Jaboticabal Campus), São Paulo State University (UNESP), São Paulo, Brazil
| | - Jackson Antônio Marcondes de Souza
- Biology Department, Faculty of Agrarian and Veterinary Sciences (Jaboticabal Campus), São Paulo State University (UNESP), São Paulo, Brazil
| | - Janete Apparecida Desidério
- Biology Department, Faculty of Agrarian and Veterinary Sciences (Jaboticabal Campus), São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
3
|
Panevska A, Čegovnik N, Fortuna K, Vukovič A, Grundner M, Modic Š, Bajc G, Skočaj M, Mravinec Bohte M, Popošek LL, Žigon P, Razinger J, Veranič P, Resnik N, Sepčić K. A single point mutation expands the applicability of ostreolysin A6 in biomedicine. Sci Rep 2023; 13:2149. [PMID: 36750638 PMCID: PMC9905591 DOI: 10.1038/s41598-023-28949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
An aegerolysin protein ostreolysin A6 (OlyA6) binds to cholesterol-complexed sphingomyelin and can be used for specific labelling of lipid rafts. In addition, OlyA6 interacts with even higher affinity with ceramide phosphoethanolamine (CPE), a sphingolipid that dominates in invertebrate cell membranes. In the presence of pleurotolysin B, a protein bearing the membrane-attack complex/perforin domain, OlyA6 forms pores in insect midgut cell membranes and acts as a potent bioinsecticide. It has been shown that a point mutation of glutamate 69 to alanine (E69A) allows OlyA6 to bind to cholesterol-free sphingomyelin. Using artificial lipid membranes and mammalian MDCK cells, we show that this mutation significantly enhances the interaction of OlyA6 with sphingomyelin and CPE, and allows recognition of these sphingolipids even in the absence of cholesterol. Our results suggest that OlyA6 mutant E69A could serve as complementary tool to detect and study cholesterol-associated and free sphingomyelin or CPE in membranes. However, the mutation does not improve the membrane-permeabilizing activity after addition of pleurotolysin B, which was confirmed in toxicity tests on insect and mammalian cell lines, and on Colorado potato beetle larvae.
Collapse
Affiliation(s)
- Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Nastja Čegovnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Klavdija Fortuna
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Alen Vukovič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Maja Grundner
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Špela Modic
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Martina Mravinec Bohte
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Lara Larisa Popošek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Primož Žigon
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | - Jaka Razinger
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Polenogova OV, Noskov YA, Artemchenko AS, Zhangissina S, Klementeva TN, Yaroslavtseva ON, Khodyrev VP, Kruykova NA, Glupov VV. Citrobacter freundii, a natural associate of the Colorado potato beetle, increases larval susceptibility to Bacillus thuringiensis. PEST MANAGEMENT SCIENCE 2022; 78:3823-3835. [PMID: 35238478 DOI: 10.1002/ps.6856] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND We assume that certain representatives of gut microflora mediate immune changes during dysbiosis, accelerating septicemia caused by Bacillus thuringiensis. RESULTS Co-introduction of Citrobacter freundii with Bacillus thuringiensis var. tenebrionis (morrisoni) (Bt) led to an increase in Colorado potato beetle (CPB) larval mortality to 69.0% (1.3-5×) and a synergistic effect was observed from day 1 to day 6. Ultrathin sections of the CPB midgut showed autophagosome formation and partial destruction of gut microvilli under the influence of Bt, which was accompanied by pronounced hypersecretion of the endoplasmic reticulum with apocrine vesicle formation and oncotic changes in cells under the action of C. freundii. The destruction of gut tissues was accompanied by suppression of detoxification processes under the action of the bacteria and a decrease (2.8-3.5×) in the concentration of lipid oxidation products during Bt infection. In the first hours post combined treatment, we registered a slight increase in the total hemocyte count (THC) especially a predomination (1.4×) of immune-competent plasmatocytes. Oral administration of symbiotic and entomopathogenic bacteria to the CPB larvae significantly decreased the THC (1.4×) after 24 h and increased (1.1-1.5×) the detoxifying enzymes level in the lymph. These changes are likely to be associated with the destruction of hemocytes and the need to remove the toxic products of reactive oxygen species. CONCLUSION The obtained results indicate that feeding of C. freundii and B. thuringiensis to the CPB larvae is accompanied by tissue changes that significantly affect the cellular and humoral immunity of the insect, increasing its susceptibility to Bt. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Olga V Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yury A Noskov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - Anna S Artemchenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Saule Zhangissina
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana N Klementeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor P Khodyrev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalya A Kruykova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Zemek R, Konopická J, Jozová E, Skoková Habuštová O. Virulence of Beauveria bassiana Strains Isolated from Cadavers of Colorado Potato Beetle, Leptinotarsa decemlineata. INSECTS 2021; 12:1077. [PMID: 34940165 PMCID: PMC8703872 DOI: 10.3390/insects12121077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
The Colorado potato beetle, Leptinotarsa decemlineata (Say), is a serious, widely distributed pest of potato and other crops. This pest is able to defoliate the host plant and cause severe yield loss. Moreover, the pest quickly becomes resistant to many chemical pesticides. Therefore, the development of novel biopesticides targeting this pest is urgently needed. The purpose of this study was to obtain new strains of the entomopathogenic fungus Beauveria bassiana and assess their efficacy against L. decemlineata adults under laboratory conditions. Twelve strains were isolated from cadavers of Colorado potato beetles collected in potato fields in the Czech Republic. Test beetles were treated by suspensions of conidia at the concentration of 1 × 107 spores per milliliter and their survival was recorded daily for three weeks. The results of the bioassays revealed that all new native strains were pathogenic to L. decemlineata adults and caused mortality up to 100% at the end of the trial period with an LT50 of about 7 days. These strains were more virulent than a reference strain GHA and some of them can be recommended for the development of a new mycoinsecticide against L. decemlineata. Our findings also highlight the importance of searching for perspective strains of entomopathogenic fungi among naturally infected hosts.
Collapse
Affiliation(s)
- Rostislav Zemek
- Biology Centre CAS, Institute of Entomology, 370 05 České Budějovice, Czech Republic; (J.K.); (O.S.H.)
| | - Jana Konopická
- Biology Centre CAS, Institute of Entomology, 370 05 České Budějovice, Czech Republic; (J.K.); (O.S.H.)
| | - Eva Jozová
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture, University of South Bohemia, 370 05 České Budějovice, Czech Republic;
| | - Oxana Skoková Habuštová
- Biology Centre CAS, Institute of Entomology, 370 05 České Budějovice, Czech Republic; (J.K.); (O.S.H.)
| |
Collapse
|
6
|
Cloning and characterization of the Cry79Aa1 gene from a lepidopteran active strain of Bacillus thuringiensis. J Invertebr Pathol 2021; 185:107657. [PMID: 34487747 DOI: 10.1016/j.jip.2021.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Bacillus thuringiensis (Bt) has been used globally as a biopesticide for effective and environmentally friendly pest control. Research has intensified following the development of resistance by lepidopteran species to Bt insecticidal crystal proteins. Discovering new Bt strains with novel toxin properties which can overcome resistance is one of the strategies to improve pesticide sustainability. The genome of the Bacillus thuringiensis LTS290 strain was sequenced and assembled in 252 contigs containing a total of 6,391,328 bp. The novel cry79Aa1 gene from this strain was identified and cloned. Cry79Aa1 contains 729 amino acid residues and a molecular mass of 84.8 kDa by SDS-PAGE analysis. Cry79Aa1 was found to be active against the lepidopteran larvae of Spodoptera exigua, Helicoverpa armigera, and Plutella xylostella with LC50 values of 13.627 µg/mL, 42.8 µg/mL, and 38.086 µg/mL, respectively. However, Cry79Aa1 protein showed almost no insecticidal activity against Leguminivora glycinivorella, although some degree of growth retardation was observed.
Collapse
|
7
|
Gu J, Ye R, Xu Y, Yin Y, Li S, Chen H. A historical overview of analysis systems for Bacillus thuringiensis (Bt) Cry proteins. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Polenogova OV, Noskov YA, Yaroslavtseva ON, Kryukova NA, Alikina T, Klementeva TN, Andrejeva J, Khodyrev VP, Kabilov MR, Kryukov VY, Glupov VV. Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. PLoS One 2021; 16:e0248704. [PMID: 33760838 PMCID: PMC7990289 DOI: 10.1371/journal.pone.0248704] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
Gut physiology and the bacterial community play crucial roles in insect susceptibility to infections and insecticides. Interactions among Colorado potato beetle Leptinotarsa decemlineata (Say), its bacterial associates, pathogens and xenobiotics have been insufficiently studied. In this paper, we present our study of the survival, midgut histopathology, activity of digestive enzymes and bacterial communities of L. decemlineata larvae under the influence of Bacillus thuringiensis var. tenebrionis (morrissoni) (Bt), a natural complex of avermectins and a combination of both agents. Moreover, we estimated the impact of culturable enterobacteria on the susceptibility of the larvae to Bt and avermectins. An additive effect between Bt and avermectins was established regarding the mortality of the larvae. Both agents led to the destruction of midgut tissues, a decrease in the activity of alpha-amylases and alkaline proteinases, a decrease in the Spiroplasma leptinotarsae relative abundance and a strong elevation of Enterobacteriaceae abundance in the midgut. Moreover, an elevation of the enterobacterial CFU count was observed under the influence of Bt and avermectins, and the greatest enhancement was observed after combined treatment. Insects pretreated with antibiotics were less susceptible to Bt and avermectins, but reintroduction of the predominant enterobacteria Enterobacter ludwigii, Citrobacter freundii and Serratia marcescens increased susceptibility to both agents. We suggest that enterobacteria play an important role in the acceleration of Bt infection and avermectin toxicoses in L. decemlineata and that the additive effect between Bt and avermectin may be mediated by alterations in the bacterial community.
Collapse
Affiliation(s)
- Olga V. Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yury A. Noskov
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - Olga N. Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalya A. Kryukova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana N. Klementeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Jelizaveta Andrejeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor P. Khodyrev
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - Viktor V. Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Sorokan A, Cherepanova E, Burkhanova G, Veselova S, Rumyantsev S, Alekseev V, Mardanshin I, Sarvarova E, Khairullin R, Benkovskaya G, Maksimov I. Endophytic Bacillus spp. as a Prospective Biological Tool for Control of Viral Diseases and Non-vector Leptinotarsa decemlineata Say. in Solanum tuberosum L. Front Microbiol 2020; 11:569457. [PMID: 33178153 PMCID: PMC7593271 DOI: 10.3389/fmicb.2020.569457] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Viral diseases and their damage causing significant loss to economically important crops have increased by several folds during the last decade. All the conventional approaches are not able to eradicate the viral infection. Therefore, there is a need to look for efficient and eco-friendly viral disease-preventive measures. The genomic material of the majority of deleterious viruses of higher plants is RNA. One of the possible measures to control viruses is the use of ribonucleases (RNases), which can cleave RNA in the viral genome. Based on this, we investigated the RNase activity of endophytic Bacillus spp., which can enrich in 103–105 colony-forming units per gram of wet mass of aboveground part of potato plants. A high level of RNase activity was observed in the culture medium of Bacillus thuringiensis B-6066, Bacillus sp. STL-7, Bacillus sp. TS2, and Bacillus subtilis 26D. B. thuringiensis B-5351 had low RNase activity but high ability to colonize internal plant tissues, Bacillus sp. STL-7 with high RNase activity have relatively low number of cells in internal tissues of plants. B. thuringiensis B-6066, B. subtilis 26D, and Bacillus sp. TS stimulate RNase activity in potato plants for a long time after application. Strains with high ability to colonize internal plant tissues combined with high RNase activity reduced severity of viral diseases symptoms on plants and reduced the incidence of potato viruses M, S, and Y. It is worth noting that Bacillus spp. under investigation reduced the number of Leptinotarsa decemlineata Say. egg clusters and larvae on treated plants and showed antifeedant activity. This results in increase of potato productivity mainly in the fraction of major tubers. B. subtilis 26D and Bacillus sp. TS2 combining endophytic lifestyle, RNase, and antifeedant activity may become the basis for the development of biocontrol agents for plant protection.
Collapse
Affiliation(s)
- Antonina Sorokan
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Ekaterina Cherepanova
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Guzel Burkhanova
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Svetlana Veselova
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Sergey Rumyantsev
- Laboratory of Genomics of Plants, Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa, Russia
| | - Valentin Alekseev
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Ildar Mardanshin
- Laboratory of Selection and Seed Production of Potato, Bashkir Research Institute of Agriculture, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Elena Sarvarova
- Laboratory of Genomics of Plants, Ufa Federal Research Center, Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa, Russia
| | - Ramil Khairullin
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Galina Benkovskaya
- Laboratory of Physiological Genetics, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| | - Igor Maksimov
- Laboratory of Biochemistry of Plant Immunity, Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
10
|
Azizoglu U, Jouzani GS, Yilmaz N, Baz E, Ozkok D. Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139169. [PMID: 32460068 DOI: 10.1016/j.scitotenv.2020.139169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Entomopathogenic bacteria (EPBs), insect pathogens that produce pest-specific toxins, are environmentally-friendly alternatives to chemical insecticides. However, the most important problem with EPBs application is their limited field stability. Moreover, environmental factors such as solar radiation, leaf temperature, and vapor pressure can affect the pathogenicity of these pathogens and their toxins. Scientists have conducted intensive research to overcome such problems. Genetic engineering has great potential for the development of new engineered entomopathogens with more resistance to adverse environmental factors. Genetically modified entomopathogenic bacteria (GM-EPBs) have many advantages over wild EPBs, such as higher pathogenicity, lower spraying requirements and longer-term persistence. Genetic manipulations have been mostly applied to members of the bacterial genera Bacillus, Lysinibacillus, Pseudomonas, Serratia, Photorhabdus and Xenorhabdus. Although many researchers have found that GM-EPBs can be used safely as plant protection bioproducts, limited attention has been paid to their potential ecological impacts. The main concerns about GM-EPBs and their products are their potential unintended effects on beneficial insects (predators, parasitoids, pollinators, etc.) and rhizospheric bacteria. This review address recent update on the significant role of GM-EPBs in biological control, examining them through different perspectives in an attempt to generate critical discussion and aid in the understanding of their potential ecological impacts.
Collapse
Affiliation(s)
- Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey.
| | - Gholamreza Salehi Jouzani
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Nihat Yilmaz
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| | - Ethem Baz
- Laboratory and Veterinary Health Department, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| | - Duran Ozkok
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| |
Collapse
|
11
|
Insecticidal Activity of Bacillus thuringiensis Proteins Against Coleopteran Pests. Toxins (Basel) 2020; 12:toxins12070430. [PMID: 32610662 PMCID: PMC7404982 DOI: 10.3390/toxins12070430] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Bacillus thuringiensis is the most successful microbial insecticide agent and its proteins have been studied for many years due to its toxicity against insects mainly belonging to the orders Lepidoptera, Diptera and Coleoptera, which are pests of agro-forestry and medical-veterinary interest. However, studies on the interactions between this bacterium and the insect species classified in the order Coleoptera are more limited when compared to other insect orders. To date, 45 Cry proteins, 2 Cyt proteins, 11 Vip proteins, and 2 Sip proteins have been reported with activity against coleopteran species. A number of these proteins have been successfully used in some insecticidal formulations and in the construction of transgenic crops to provide protection against main beetle pests. In this review, we provide an update on the activity of Bt toxins against coleopteran insects, as well as specific information about the structure and mode of action of coleopteran Bt proteins.
Collapse
|
12
|
Valtierra-de-Luis D, Villanueva M, Lai L, Williams T, Caballero P. Potential of Cry10Aa and Cyt2Ba, Two Minority δ-endotoxins Produced by Bacillus thuringiensis ser. israelensis, for the Control of Aedes aegypti Larvae. Toxins (Basel) 2020; 12:toxins12060355. [PMID: 32485828 PMCID: PMC7354544 DOI: 10.3390/toxins12060355] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022] Open
Abstract
Bacillus thuringiensis ser. israelensis (Bti) has been widely used as microbial larvicide for the control of many species of mosquitoes and blackflies. The larvicidal activity of Bti resides in Cry and Cyt δ-endotoxins present in the parasporal crystal of this pathogen. The insecticidal activity of the crystal is higher than the activities of the individual toxins, which is likely due to synergistic interactions among the crystal component proteins, particularly those involving Cyt1Aa. In the present study, Cry10Aa and Cyt2Ba were cloned from the commercial larvicide VectoBac-12AS® and expressed in the acrystalliferous Bt strain BMB171 under the cyt1Aa strong promoter of the pSTAB vector. The LC50 values for Aedes aegypti second instar larvae estimated at 24 hpi for these two recombinant proteins (Cry10Aa and Cyt2Ba) were 299.62 and 279.37 ng/mL, respectively. Remarkable synergistic mosquitocidal activity was observed between Cry10Aa and Cyt2Ba (synergistic potentiation of 68.6-fold) when spore + crystal preparations, comprising a mixture of both recombinant strains in equal relative concentrations, were ingested by A. aegypti larvae. This synergistic activity is among the most powerful described so far with Bt toxins and is comparable to that reported for Cyt1A when interacting with Cry4Aa, Cry4Ba or Cry11Aa. Synergistic mosquitocidal activity was also observed between the recombinant proteins Cyt2Ba and Cry4Aa, but in this case, the synergistic potentiation was 4.6-fold. In conclusion, although Cry10Aa and Cyt2Ba are rarely detectable or appear as minor components in the crystals of Bti strains, they represent toxicity factors with a high potential for the control of mosquito populations.
Collapse
Affiliation(s)
- Daniel Valtierra-de-Luis
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (D.V.-d.-L.); (M.V.); (L.L.)
| | - Maite Villanueva
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (D.V.-d.-L.); (M.V.); (L.L.)
- Bioinsectis SL, Avda Pamplona 123, 31192 Mutilva, Spain
| | - Liliana Lai
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (D.V.-d.-L.); (M.V.); (L.L.)
| | | | - Primitivo Caballero
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra, 31006 Pamplona, Spain; (D.V.-d.-L.); (M.V.); (L.L.)
- Bioinsectis SL, Avda Pamplona 123, 31192 Mutilva, Spain
- Institute for Multidisciplinary Applied Biology Research (IMAB), Universidad Pública de Navarra, 31006 Mutilva, Spain
- Correspondence:
| |
Collapse
|