1
|
Li Z, Yang X, Guo Y, Zhang X, Li Y, Kuo YW, Wei T, Chen Q. Candidatus Liberibacter asiaticus exploits cytoskeletal system of psyllid vector for circulative propagative infection. Microbiol Res 2024; 292:127985. [PMID: 39674003 DOI: 10.1016/j.micres.2024.127985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
The citrus disease Huanglongbing (HLB) in Asia and the US is caused by Candidatus Liberibacter asiaticus (CLas), which is primarily transmitted by Diaphorina citri, also known as Asian citrus psyllid in a persistent and propagative manner. However, the exact mechanisms underlying CLas circulation within D. citri remain largely unclear. Here, immunofluorescence microscopy and electron microscopy were utilized to track the sequential infection of CLas in D. citri, from alimentary canal to salivary glands, and ultimately to the plant host. CLas was found to initially infect the epithelium of filter chamber, after which it rapidly spreads to visceral muscles for further infection throughout the alimentary canal. The rapid spread in D. citri adults causes the duration of CLas circulation to be as short as 9 days. The duration of latent period may be explained by the recruitment of cytoskeletal α-actinin by the outer membrane protein (OMP) of CLas. Inhibition of actin filament or knocking down the expression of α-actinin significantly suppresses CLas cytoskeleton-dependent infection in and spread among D. citri organs. Injection of prokaryotically expressed OMP into D. citri also recruits α-actinin, resembling the natural infection of CLas. Our studies showed that CLas exploits α-actinin and remolds actin machinery of D. citri for overcoming the midgut release barrier, facilitating its circulation in the vector. By shedding light on these mechanisms, this report reveals more detailed mechanisms in CLas infection in D. citri, and offers a plausible explanation for rapid dissemination of HLB in nature from the perspective of psyllid transmission.
Collapse
Affiliation(s)
- Zhiqiang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiao Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuxin Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaofeng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - You Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Zhao ST, Ran XT, Huang YY, Sang W, Derrick BE, Qiu BL. Transcriptomic response of citrus psyllid salivary glands to the infection of citrus Huanglongbing pathogen. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-20. [PMID: 38444234 DOI: 10.1017/s0007485324000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.
Collapse
Affiliation(s)
- San-Tao Zhao
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Xiao-Tong Ran
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Yu-Yang Huang
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wen Sang
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | | | - Bao-Li Qiu
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
3
|
Arad N, Paredes-Montero JR, Mondal MH, Ponvert N, Brown JK. RNA interference-mediated knockdown of genes involved in sugar transport and metabolism disrupts psyllid Bactericera cockerelli (Order: Hemiptera) gut physiology and results in high mortality. FRONTIERS IN INSECT SCIENCE 2023; 3:1283334. [PMID: 38469486 PMCID: PMC10926392 DOI: 10.3389/finsc.2023.1283334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 03/13/2024]
Abstract
Introduction The causal agent of zebra chip of potato and vein-greening diseases of tomato is "Candidatus Liberibacter solanacearum" (CLso), a fastidious bacterium transmitted by the potato psyllid. In the absence of disease-resistant cultivars, disease management has relied on minimizing vector population size to reduce CLso transmission, which requires frequent insecticide applications. There is growing interest in the use of RNA interference (RNAi) technology to supplant traditional insecticides with biopesticides. This requires knowledge of genes essential for insect livelihood whose knockdown leads to significant mortality or other phenotypes. Such candidate genes can be evaluated by reverse genetics approaches to further corroborate predicted gene function. Methods Here, five potato psyllid genes involved in sugar homeostasis in the potato psyllid gut, α-glucosidase1 (AGLU1), aquaporin2 (AQP2), facilitated trehalose transporter1 (TRET1), Trehalase1 (TRE1), and Trehalase2 (TRE2), were investigated as candidates for effective gene silencing. Potato psyllid dsRNAs were designed to optimize knockdown of gene targets. Third instar PoP nymphs were given a 48-hr ingestion-access period (IAP) on individual or groups of dsRNA in 20% sucrose. Mortality was recorded 0, 3, 5, 7, and 9 days post-IAP. Gene knockdown was analyzed 9 days post-IAP by quantitative real-time reverse-transcriptase polymerase chain reaction amplification. Results The individual or stacked dsRNA combinations resulted in 20-60% and 20-40% knockdown, respectively, while subsequent psyllid mortality ranged from 20-40% to >60% for single and stacked dsRNA combinations, respectively. Reverse genetics analysis showed that simultaneous knockdown of the five selected candidate genes with predicted functions in pathways involved in sugar-homeostasis, metabolism, and -transport yielded the highest mortality, when compared with single or combinations of targets. Discussion Results confirmed the functions afforded by psyllid gut genes responsible for osmotic homeostasis and sugar metabolism/transport are essential for livelihood, identifying them as potentially lucrative RNAi biopesticide targets and highlighted the translational relevance of targeting multiple nodes in a physiological pathway simultaneously.
Collapse
Affiliation(s)
- Neda Arad
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Jorge R. Paredes-Montero
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Guayas, Ecuador
| | | | - Nathaniel Ponvert
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
4
|
Sarkar P, Lin CY, Buritica JR, Killiny N, Levy A. Crossing the Gateless Barriers: Factors Involved in the Movement of Circulative Bacteria Within Their Insect Vectors. PHYTOPATHOLOGY 2023; 113:1805-1816. [PMID: 37160668 DOI: 10.1094/phyto-07-22-0249-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant bacterial pathogens transmitted by hemipteran vectors pose a large threat to the agricultural industry worldwide. Although virus-vector relationships have been widely investigated, a significant gap exists in our understanding of the molecular interactions between circulative bacteria and their insect vectors, mainly leafhoppers and psyllids. In this review, we will describe how these bacterial pathogens adhere, invade, and proliferate inside their insect vectors. We will also highlight the different transmission routes and molecular factors of phloem-limited bacteria that maintain an effective relationship with the insect host. Understanding the pathogen-vector relationship at the molecular level will help in the management of vector-borne bacterial diseases.
Collapse
Affiliation(s)
- Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Jacobo Robledo Buritica
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Nabil Killiny
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
5
|
Sarkar P, Jassar O, Ghanim M. The plant pathogenic bacterium Candidatus Liberibacter solanacearum induces calcium-regulated autophagy in midgut cells of its insect vector Bactericera trigonica. Microbiol Spectr 2023; 11:e0130123. [PMID: 37768086 PMCID: PMC10581152 DOI: 10.1128/spectrum.01301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy plays an important role against pathogen infection in many organisms; however, little has been done with regard to vector-borne plant and animal pathogens, that sometimes replicate and cause deleterious effects in their vectors. Candidatus Liberibacter solanacearum (CLso) is a fastidious gram-negative phloem-restricted plant pathogen and vectored by the carrot psyllid, Bactericera trigonica. The plant disease caused by this bacterium is called carrot yellows and has recently gained much importance due to worldwide excessive economical losses. Here, we demonstrate that calcium ATPase, cytosolic calcium, and most importantly Beclin-1 have a role in regulating autophagy and its association with Liberibacter inside the psyllid. The presence of CLso generates reactive oxygen species and induces the expression of detoxification enzymes in the psyllid midguts, a main site for bacteria transmission. CLso also induces the expression of both sarco/endoplasmic reticulum Ca2+pump (SERCA) and 1,4,5-trisphosphate receptors (ITPR) in midguts, resulting in high levels of calcium in the cellular cytosol. Silencing these genes individually disrupted the calcium levels in the cytosol and resulted in direct effects on autophagy and subsequently on Liberibacter persistence and transmission. Inhibiting Beclin1-phosphorylation through different calcium-induced kinases altered the expression of autophagy and CLso titers and persistence. Based on our results obtained from the midgut, we suggest the existence of a direct correlation between cytosolic calcium levels, autophagy, and CLso persistence and transmission by the carrot psyllid. IMPORTANCE Plant diseases caused by vector-borne Liberibacter species are responsible for the most important economic losses in many agricultural sectors. Preventing these diseases relies mostly on chemical sprays against the insect vectors. Knowledge-based interference with the bacteria-vector interaction remains a promising approach as a sustainable solution. For unravelling how Liberibacter exploits molecular pathways in its insect vector for transmission, here, we show that the bacterium manipulates calcium levels on both sides of the endoplasmic reticulum membrane, resulting in manipulating autophagy. Silencing genes associated with these pathways disrupted the calcium levels in the cytosol and resulted in direct effects on autophagy and Liberibacter transmission. These results demonstrate major pathways that could be exploited for manipulating and controlling the disease transmission.
Collapse
Affiliation(s)
- Poulami Sarkar
- Department of Entomology, Volcani Institute, Rishon LeZion, Israel
| | - Ola Jassar
- Department of Entomology, Volcani Institute, Rishon LeZion, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Murad Ghanim
- Department of Entomology, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
6
|
Tang XT, Levy J, Tamborindeguy C. Potato psyllids mount distinct gut responses against two different 'Candidatus Liberibacter solanacearum' haplotypes. PLoS One 2023; 18:e0287396. [PMID: 37327235 PMCID: PMC10275445 DOI: 10.1371/journal.pone.0287396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
'Candidatus Liberibacter solanacearum' (Lso) is a bacterial pathogen infecting several crops and causing damaging diseases. Several Lso haplotypes have been identified. Among the seven haplotypes present in North America, LsoA and LsoB are transmitted by the potato psyllid, Bactericera cockerelli (Šulc), in a circulative and persistent manner. The gut, which is the first organ pathogen encounters, could be a barrier for Lso transmission. However, the molecular interactions between Lso and the psyllid vector at the gut interface remain largely unknown. In this study, we investigated the global transcriptional responses of the adult psyllid gut upon infection with two Lso haplotypes (LsoA and LsoB) using Illumina sequencing. The results showed that each haplotype triggers a unique transcriptional response, with most of the distinct genes elicited by the highly virulent LsoB. The differentially expressed genes were mainly associated with digestion and metabolism, stress response, immunity, detoxification as well as cell proliferation and epithelium renewal. Importantly, distinct immune pathways were triggered by LsoA and LsoB in the gut of the potato psyllid. The information in this study will provide an understanding of the molecular basis of the interactions between the potato psyllid gut and Lso, which may lead to the discovery of novel molecular targets for the control of these pathogens.
Collapse
Affiliation(s)
- Xiao-Tian Tang
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
7
|
Jassar O, Ghanim M. Association of endoplasmic reticulum associated degradation (ERAD) with the transmission of Liberibacter solanacearum by its psyllid vector. INSECT MOLECULAR BIOLOGY 2023. [PMID: 37060303 DOI: 10.1111/imb.12842] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Candidatus Liberibacter solanacearum (CLso) is a complex of gram negative plant pathogenic and fastidious bacterial haplotypes restricted to the phloem and transmitted by several psyllid species. In Israel, the carrot psyllid Bactericera trigonica transmits CLso haplotype D in a persistent and propagative manner and causes the carrot yellows disease, inflicting significant economic losses in many countries. Understanding the transmission of CLso is fundamental to devising sustainable management strategies. Persistent transmission of vector-borne pathogens involves the critical steps of adhesion, cell invasion and replication inside the insect gut cells before passage to the hemolymph. Using microscopy and expression analyses, we have previously confirmed a role for the endoplasmic reticulum (ER) in inducing immune responses and subsequent molecular pathways resulting in programmed cell death (apoptosis) upon CLso-infection in the midgut. In the current study, we confirm that the ER-associated degradation (ERAD) machinery and its associated marker genes were upregulated in CLso infected insects, including Derlin-1, Selenoprotein-1 and Ubiquitin Ligase RNF-185. Silencing Derlin-1, which acts on the ER membrane by regulating the degradation of unfolded proteins upon ER stress, revealed its role in CLso persistence and transmission. Molecular pathways initiated in the ER membrane upon bacterial infection are well documented in human, animal and insect systems, and this study confirms the role of the ER in CLso-psyllid interactions.
Collapse
Affiliation(s)
- Ola Jassar
- Department of Entomology, Volcani Institute, Rishon Lezion, Israel
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Murad Ghanim
- Department of Entomology, Volcani Institute, Rishon Lezion, Israel
| |
Collapse
|
8
|
Sarkar P, Ghanim M. Interaction of Liberibacter Solanacearum with Host Psyllid Vitellogenin and Its Association with Autophagy. Microbiol Spectr 2022; 10:e0157722. [PMID: 35863005 PMCID: PMC9430699 DOI: 10.1128/spectrum.01577-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 12/28/2022] Open
Abstract
Candidatus Liberibacter solanacearum (CLso) haplotype D, transmitted by the carrot psyllid Bactericera trigonica, is a major constraint for carrot production in Israel. Unveiling the molecular interactions between the psyllid vector and CLso can facilitate the development of nonchemical approaches for controlling the disease caused by CLso. Bacterial surface proteins are often known to be involved in adhesion and virulence; however, interactions of CLso with carrot psyllid proteins that have a role in the transmission process has remained unexplored. In this study, we used CLso outer membrane protein (OmpA) and flagellin as baits to screen for psyllid interacting proteins in a yeast two-hybrid system assay. We identified psyllid vitellogenin (Vg) to interact with both OmpA and flagellin of CLso. As Vg and autophagy are often tightly linked, we also studied the expression of autophagy-related genes to further elucidate this interaction. We used the juvenile hormone (JH-III) to induce the expression of Vg, thapsigargin for suppressing autophagy, and rapamycin for inducing autophagy. The results revealed that Vg negatively regulates autophagy. Induced Vg expression significantly suppressed autophagy-related gene expression and the levels of CLso significantly increased, resulting in a significant mortality of the insect. Although the specific role of Vg remains obscure, the findings presented here identify Vg as an important component in the insect immune responses against CLso and may help in understanding the initial molecular response in the vector against Liberibacter. IMPORTANCE Pathogen transmission by vectors involves multiple levels of interactions, and for the transmission of liberibacter species by psyllid vectors, much of these interactions are yet to be explored. Candidatus Liberibacter solanacearum (CLso) haplotype D inflicts severe economic losses to the carrot industry. Understanding the specific interactions at different stages of infection is hence fundamental and could lead to the development of better management strategies to disrupt the transmission of the bacteria to new host plants. Here, we show that two liberibacter membrane proteins interact with psyllid vitellogenin and also induce autophagy. Altering vitellogenin expression directly influences autophagy and CLso abundance in the psyllid vector. Although the exact mechanism underlying this interaction remains unclear, this study highlights the importance of immune responses in the transmission of this disease agent.
Collapse
Affiliation(s)
- Poulami Sarkar
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
9
|
Gäde G, Marco HG. The Adipokinetic Peptides of Hemiptera: Structure, Function, and Evolutionary Trends. FRONTIERS IN INSECT SCIENCE 2022; 2:891615. [PMID: 38468778 PMCID: PMC10926376 DOI: 10.3389/finsc.2022.891615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/05/2022] [Indexed: 03/13/2024]
Abstract
The Hemiptera comprise the most species-rich order of the hemimetabolous insects. Members of a number of superfamilies, most notably especially the more basal ones such as white flies, psyllids and aphids, belong to the most destructive agricultural insects known worldwide. At the other end of the phylogenetic tree are hemipterans that are notorious medical pests (e.g. kissing bugs). Most of the hemipteran species are good flyers, and lipid oxidation plays a pivotal role to power the contraction of flight muscles and, in aquatic water bugs, also deliver the ATP for the extensive swimming action of the leg muscles. Mobilization of stored lipids (mostly triacylglycerols in the fat body) to circulating diacylglycerols in the hemolymph is regulated by a set of small neuropeptides, the adipokinetic hormones (AKHs). We searched the literature and publicly available databases of transcriptomes and genomes to present here AKH sequences from 191 hemipteran species. Only few of these peptides were sequenced via Edman degradation or mass spectrometry, and even fewer were characterized with molecular biology methods; thus, the majority of the AKHs we have identified by bioinformatics are merely predicted sequences at this stage. Nonetheless, a total of 42 AKH primary sequences are assigned to Hemiptera. About 50% of these structures occur also in other insect orders, while the remaining 50% are currently unique for Hemiptera. We find 9 novel AKHs not shown to be synthesized before in any insect. Most of the hemipteran AKHs are octapeptides (28) but there is an impressive number of decapeptides (12) compared to other speciose orders such as Diptera and Lepidoptera. We attempt to construct a hypothetical molecular peptide evolution of hemipteran AKHs and find quite a bit of overlapping with current phylogenetic ideas of the Hemiptera. Lastly, we discuss the possibility to use the sequence of the aphid AKH as lead peptide for the research into a peptide mimetic fulfilling criteria of a green insecticide.
Collapse
Affiliation(s)
- Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | | |
Collapse
|
10
|
Lin CY, Achor D, Levy A. Intracellular Life Cycle of ' Candidatus Liberibacter asiaticus' Inside Psyllid Gut Cells. PHYTOPATHOLOGY 2022; 112:145-153. [PMID: 34689612 DOI: 10.1094/phyto-07-21-0301-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
'Candidatus Liberibacter asiaticus' (CLas), the devastating pathogen related to Huanglongbing (HLB), is a phloem-limited, fastidious, insect-borne bacterium. Rapid spread of HLB disease relies on CLas-efficient propagation in the vector, the Asian citrus psyllid Diaphorina citri, in a circulative manner. Understanding the intracellular lifecycle of CLas in psyllid midgut, the major organ for CLas transmission, is fundamental to improving current management strategies. Using a microscopic approach within CLas-infected insect midgut, we observed the entry of CLas into gut cells inside vesicles, termed Liberibacter-containing vacuoles (LCVs), by endocytosis. Endocytosis is followed by the formation of endoplasmic reticulum-related and replication permissive vacuoles (rLCVs). Additionally, we observed the formation of double membrane autophagosome-like structure, termed autophagy-related vacuole (aLCV). Vesicles containing CLas egress from aLCV and fuse with the cell membrane. Immunolocalization studies showed that CLas uses endocytosis- and exocytosis-like mechanisms that mediates bacterial invasion and egress. Upregulation of autophagy-related genes indicated subversion of host autophagy by CLas in psyllid vector to promote infection. These results indicate that CLas interacts with host cellular machineries to undergo a multistage intracellular cycle through endocytic, secretory, autophagic, and exocytic pathways via complex machineries. Potential tactics for HLB control can be made depending on further investigations on the knowledge of the molecular mechanisms of CLas intracellular cycle.
Collapse
Affiliation(s)
- Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
11
|
Ghosh S, Bello VH, Ghanim M. Transmission parameters of pepper whitefly-borne vein yellows virus (PeWBVYV) by Bemisia tabaci and identification of an insect protein with a putative role in polerovirus transmission. Virology 2021; 560:54-65. [PMID: 34038845 DOI: 10.1016/j.virol.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 11/30/2022]
Abstract
Pepper crops in Israel are infected by poleroviruses, Pepper vein yellows virus 2 (PeVYV-2) and Pepper whitefly-borne vein yellows virus (PeWBVYV). Herein we characterize the transmission of PeWBVYV and the aphid-transmitted PeVYV-2, and show that PeWBVYV is specifically transmitted by MEAM1 species of the whitefly Bemisia tabaci, with a minimum latency period of 120 h, and not by the Mediterranean (MED). PeWBVYV and PeVYV-2 were detected in the hemolymph of MED and MEAM1, respectively, however, amounts of PeWBVYV in the hemolymph of MED or PeVYV-2 in MEAM1 were much lower than PeWBVYV in hemolymph of MEAM1. Moreover, we show that PeWBVYV does not interact with the GroEL protein of the symbiont Hamiltonella and thus does not account for the non-transmissibility by MED. An insect glycoprotein, C1QBP, interacting in vitro with the capsid proteins of both PeWBVYV and PeVYV-2 is reported which suggests a putative functional role in polerovirus transmission.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Department of Entomology, The Volcani Center, Rishon LeZion, 7505101, Israel
| | | | - Murad Ghanim
- Department of Entomology, The Volcani Center, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
12
|
Rosche KL, Sidak-Loftis LC, Hurtado J, Fisk EA, Shaw DK. Arthropods Under Pressure: Stress Responses and Immunity at the Pathogen-Vector Interface. Front Immunol 2021; 11:629777. [PMID: 33659000 PMCID: PMC7917218 DOI: 10.3389/fimmu.2020.629777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding what influences the ability of some arthropods to harbor and transmit pathogens may be key for controlling the spread of vector-borne diseases. Arthropod immunity has a central role in dictating vector competence for pathogen acquisition and transmission. Microbial infection elicits immune responses and imparts stress on the host by causing physical damage and nutrient deprivation, which triggers evolutionarily conserved stress response pathways aimed at restoring cellular homeostasis. Recent studies increasingly recognize that eukaryotic stress responses and innate immunity are closely intertwined. Herein, we describe two well-characterized and evolutionarily conserved mechanisms, the Unfolded Protein Response (UPR) and the Integrated Stress Response (ISR), and examine evidence that these stress responses impact immune signaling. We then describe how multiple pathogens, including vector-borne microbes, interface with stress responses in mammals. Owing to the well-conserved nature of the UPR and ISR, we speculate that similar mechanisms may be occurring in arthropod vectors and ultimately impacting vector competence. We conclude this Perspective by positing that novel insights into vector competence will emerge when considering that stress-signaling pathways may be influencing the arthropod immune network.
Collapse
Affiliation(s)
- Kristin L Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Lindsay C Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Elizabeth A Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Dana K Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
13
|
The Actin Cytoskeleton Mediates Transmission of " Candidatus Liberibacter solanacearum" by the Carrot Psyllid. Appl Environ Microbiol 2021; 87:AEM.02393-20. [PMID: 33188004 DOI: 10.1128/aem.02393-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/30/2022] Open
Abstract
Several vector-borne plant pathogens have evolved mechanisms to exploit and to hijack vector host cellular, molecular, and defense mechanisms for their transmission. In the past few years, Liberibacter species, which are transmitted by several psyllid vectors, have become an economically important group of pathogens that have devastated the citrus industry and caused tremendous losses to many other important crops worldwide. The molecular mechanisms underlying the interactions of Liberibacter species with their psyllid vectors are poorly studied. "Candidatus Liberibacter solanacearum," which is associated with important vegetable diseases, is transmitted by the carrot psyllid Bactericera trigonica in a persistent manner. Here, we elucidated the role of the B. trigonica Arp2/3 protein complex, which plays a major role in regulation of the actin cytoskeleton, in the transmission of "Ca Liberibacter solanacearum." "Ca Liberibacter solanacearum" colocalized with ArpC2, a key protein in this complex, and this colocalization was strongly associated with actin filaments. Silencing of the psyllid ArpC2 disrupted the colocalization and the dynamics of F-actin. Silencing of RhoGAP21 and Cdc42, which act in the signaling cascade leading to upregulation of Arp2/3 and F-actin bundling, showed similar results. On the other hand, silencing of ArpC5, another component of the complex, did not induce any significant effects on F-actin formation. Finally, ArpC2 silencing caused a 73.4% reduction in "Ca Liberibacter solanacearum" transmission by psyllids, strongly suggesting that transmission of "Ca Liberibacter solanacearum" by B. trigonica is cytoskeleton dependent and "Ca Liberibacter solanacearum" interacts with ArpC2 to exploit the intracellular actin nucleation process for transmission. Targeting this unique interaction could lead to the development of a novel strategy for the management of Liberibacter-associated diseases.IMPORTANCE Plant diseases caused by vector-borne pathogens are responsible for tremendous losses and threaten some of the most important agricultural crops. A good example is the citrus greening disease, which is caused by bacteria of the genus Liberibacter and is transmitted by psyllids; it has devastated the citrus industry in the United States, China, and Brazil. Here, we show that psyllid-transmitted "Candidatus Liberibacter solanacearum" employs the actin cytoskeleton of psyllid gut cells, specifically the ArpC2 protein in the Arp2/3 complex of this system, for movement and transmission in the vector. Silencing of ArpC2 dramatically influenced the interaction of "Ca Liberibacter solanacearum" with the cytoskeleton and decreased the bacterial transmission to plants. This system could be targeted to develop a novel approach for the control of Liberibacter-associated diseases.
Collapse
|
14
|
Ghosh S, Sela N, Kontsedalov S, Lebedev G, Haines LR, Ghanim M. An Intranuclear Sodalis-Like Symbiont and Spiroplasma Coinfect the Carrot Psyllid, Bactericera trigonica (Hemiptera, Psylloidea). Microorganisms 2020; 8:E692. [PMID: 32397333 PMCID: PMC7284866 DOI: 10.3390/microorganisms8050692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 01/27/2023] Open
Abstract
Endosymbionts harbored inside insects play critical roles in the biology of their insect host and can influence the transmission of pathogens by insect vectors. Bactericera trigonica infests umbelliferous plants and transmits the bacterial plant pathogen Candidatus Liberibacter solanacearum (CLso), causing carrot yellows disease. To characterize the bacterial diversity of B. trigonica, as a first step, we used PCR-restriction fragment length polymorphism (PCR-RFLP) and denaturing gradient gel electrophoresis (DGGE) analyses of 16S rDNA to identify Sodalis and Spiroplasma endosymbionts. The prevalence of both symbionts in field-collected psyllid populations was determined: Sodalis was detected in 100% of field populations, while Spiroplasma was present in 82.5% of individuals. Phylogenetic analysis using 16S rDNA revealed that Sodalis infecting B. trigonica was more closely related to symbionts infecting weevils, stink bugs and tsetse flies than to those from psyllid species. Using fluorescent in situ hybridization and immunostaining, Sodalis was found to be localized inside the nuclei of the midgut cells and bacteriocytes. Spiroplasma was restricted to the cytoplasm of the midgut cells. We further show that a recently reported Bactericera trigonica densovirus (BtDNV), a densovirus infecting B. trigonica was detected in 100% of psyllids and has reduced titers inside CLso-infected psyllids by more than two-fold compared to CLso uninfected psyllids. The findings of this study will help to increase our understanding of psyllid-endosymbiont interactions.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Department of Entomology, Institute of Plant Protection, Volcani Center, ARO, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel; (S.G.); (S.K.); (G.L.)
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Volcani Center, ARO, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel;
| | - Svetlana Kontsedalov
- Department of Entomology, Institute of Plant Protection, Volcani Center, ARO, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel; (S.G.); (S.K.); (G.L.)
| | - Galina Lebedev
- Department of Entomology, Institute of Plant Protection, Volcani Center, ARO, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel; (S.G.); (S.K.); (G.L.)
| | - Lee R. Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
| | - Murad Ghanim
- Department of Entomology, Institute of Plant Protection, Volcani Center, ARO, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel; (S.G.); (S.K.); (G.L.)
| |
Collapse
|
15
|
Complete Genome Sequence of a Putative Densovirus Infecting the Carrot Psyllid Bactericera trigonica. Microbiol Resour Announc 2019; 8:8/48/e01103-19. [PMID: 31776217 PMCID: PMC6883104 DOI: 10.1128/mra.01103-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the genome of a putative densovirus infecting the carrot psyllid Bactericera trigonica, obtained by inverse PCR and named Bactericera trigonica densovirus (BtDNV). The ambisense genome of BtDNV is identical in structure to those of the ambidensoviruses, and its encoded proteins share the highest sequence identity with the Asian citrus psyllid Diaphorina citri densovirus. Here, we report the genome of a putative densovirus infecting the carrot psyllid Bactericera trigonica, obtained by inverse PCR and named Bactericera trigonica densovirus (BtDNV). The ambisense genome of BtDNV is identical in structure to those of the ambidensoviruses, and its encoded proteins share the highest sequence identity with the Asian citrus psyllid Diaphorina citri densovirus.
Collapse
|