1
|
An D, Li L. Effects of molecular weight of hydrolysate on the formation of soy protein isolate hydrolysate nanofibrils: Kinetics, structures, and interactions. Food Chem 2024; 456:139687. [PMID: 38889496 DOI: 10.1016/j.foodchem.2024.139687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Enzymatic hydrolysis prior to protein fibrillation was an effective way to facilitate the formation of nanofibrils. This study aimed to investigate the effects of molecular weights of hydrolysate on the kinetics, structures, and interactions of soy protein isolate (SPI) hydrolysate nanofibrils. The results showed that hydrolysate with molecular weight > 10 kDa showed a distinct fibrillation kinetics curve and a higher apparent rate constant (27.72) during fibrillation, indicating their vital role in determining the fibrillation. Hydrolysate with molecular weight > 10 kDa could form nanofibrils with higher radius gyration (17.11 ± 0.77 Å) due to stronger hydrophobic interaction, showing a stronger fibrillation ability. Hydrolysate with molecular weight within 5-10 kDa exhibited enhanced π-π stacking interactions during fibrillation, thereby promoting the extension of nanofibrils, and contributing to the formation of more nanofibrils. Hydrolysate with molecular weight < 5 kDa tended to randomly aggregate during fibrillation, resulting in a significant loss of cross-β structures in nanofibrils. Therefore, hydrolysate with different molecular weights exhibited synergistic effects during fibrillation.
Collapse
Affiliation(s)
- Di An
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Oh JH, Karadeniz F, Yang J, Lee H, Choi MN, Jeon S, Park G, Kim J, Park K, Kong CS. Antioxidant, anti-inflammatory, anti-adipogenesis activities and proximate composition of Hermetia illucens larvae reared on food waste enriched with different wastes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1034-1048. [PMID: 39398304 PMCID: PMC11466730 DOI: 10.5187/jast.2023.e87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/06/2023] [Accepted: 08/10/2023] [Indexed: 10/15/2024]
Abstract
The use of insects as a food source is not a new idea, but it has gained momentum in recent years due to the need for sustainable protein source in livestock feedstuffs and for more environmentally friendly organic waste treatment. In the case of black soldier fly larvae, Hermetia illucens, research has focused on their ability to convert organic waste into usable nutrients and their potential as a protein source for animal and human consumption. In this study, black soldier fly larvae were reared on raw food waste (FW) mixed with garlic peel waste (G) and hydronic growth media waste (H) and the proximate composition and bioactive potential of black soldier fly larvae extract (SFL) were compared. Analysis showed that protein content of SFL fed with G was 4.21% higher and lipid content was 9.93% lower than FW. Similar results were obtained for SFL fed with H. Antioxidant activity of SFL-G was higher than that of SFL-FW and SFL-H. SFL-G treatment exhibited enhanced anti-inflammatory and anti-adipogenesis activities as well compared to SFL-FW. Current results suggested that feeding black soldier fly larvae with food waste added with garlic peel and hydroponic growth media waste resulted in increased nutritional value, polyphenol content and bioactivity for SFLs. In this context, garlic peel waste-added food waste was suggested a promising substrate for black soldier fly larvae to obtain high-quality protein source with enhanced antioxidant, anti-inflammatory and anti-adipogenic potential.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Nutritional Education, Graduate School of
Education, Silla University, Busan 46958, Korea
- Marine Biotechnology Center for
Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla
University, Busan 46958, Korea
| | - Fatih Karadeniz
- Marine Biotechnology Center for
Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla
University, Busan 46958, Korea
| | - Jiho Yang
- Department of Food and Nutrition, College
of Medical and Life Sciences, Silla University, Busan 46958,
Korea
| | - Hyunjung Lee
- Department of Food and Nutrition, College
of Medical and Life Sciences, Silla University, Busan 46958,
Korea
| | - Mi-Na Choi
- Department of Food and Nutrition, College
of Medical and Life Sciences, Silla University, Busan 46958,
Korea
| | - Seongeun Jeon
- Department of Food and Nutrition, College
of Medical and Life Sciences, Silla University, Busan 46958,
Korea
| | | | - Jongju Kim
- Daum Agricultural Co., Ltd.,
Hadong, 52353, Korea
| | - Kwanho Park
- Department of Agricultural Biology,
National Institute of Agricultural Sciences, Wanju 55365,
Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for
Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla
University, Busan 46958, Korea
- Department of Food and Nutrition, College
of Medical and Life Sciences, Silla University, Busan 46958,
Korea
| |
Collapse
|
3
|
Mateo-Roque P, Morales-Camacho JI, Jara-Romero GJ, Rosas-Cárdenas FDF, Huerta-González L, Luna-Suárez S. Supercritical CO 2 Treatment to Modify Techno-Functional Properties of Proteins Extracted from Tomato Seeds. Foods 2024; 13:1045. [PMID: 38611350 PMCID: PMC11011313 DOI: 10.3390/foods13071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Tomato seeds are a rich source of protein that can be utilized for various industrial food purposes. This study delves into the effects of using supercritical CO2 (scCO2) on the structure and techno-functional properties of proteins extracted from defatted tomato seeds. The defatted meal was obtained using hexane (TSMH) and scCO2 (TSMC), and proteins were extracted using water (PEWH and PEWC) and saline solution (PESH and PESC). The results showed that scCO2 treatment significantly improved the techno-functional properties of protein extracts, such as oil-holding capacity and foaming capacity (especially for PEWC). Moreover, emulsifying capacity and stability were enhanced for PEWC and PESC, ranging between 4.8 and 46.7% and 11.3 and 96.3%, respectively. This was made possible by the changes in helix structure content induced by scCO2 treatment, which increased for PEWC (5.2%) and decreased for PESC (8.0%). Additionally, 2D electrophoresis revealed that scCO2 hydrolyzed alkaline proteins in the extracts. These findings demonstrate the potential of scCO2 treatment in producing modified proteins for food applications.
Collapse
Affiliation(s)
- Paola Mateo-Roque
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Jocksan I. Morales-Camacho
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, San Andrés Cholula 72810, Puebla, Mexico;
| | - Guadalupe Janet Jara-Romero
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Flor de Fátima Rosas-Cárdenas
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Luis Huerta-González
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Silvia Luna-Suárez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| |
Collapse
|
4
|
Sánchez-Estrada MDLL, Aguirre-Becerra H, Feregrino-Pérez AA. Bioactive compounds and biological activity in edible insects: A review. Heliyon 2024; 10:e24045. [PMID: 38293460 PMCID: PMC10825307 DOI: 10.1016/j.heliyon.2024.e24045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/09/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
New strategies to combat hunger are a current and urgent demand. The increase in population has generated a high demand for products and services that affect food production, cultivation areas, and climate. Viable and sustainable alternative sources have been sought to meet food quality requirements. In this context, edible insects are a good source of macro-nutrients, and bioactive compounds confer biological properties that improve their nutritional aspects and benefit human health. This review aims to present the benefits and contributions of edible insects from the point of view of the biological contribution of macronutrients, and bioactive compounds, as well as consider some anti-nutritional aspects reported in edible insects. It was found that insects possess most of the macronutrients necessary for human life and are rich in bioactive compounds commonly found in plants. These bioactive compounds can vary significantly depending on the developmental stage, diet, and species of edible insects. However, they also contain phytochemicals in which anti-nutrients predominate, which can adversely affect humans with allergenic reactions or reduced nutrient viability when consumed in high amounts or for prolonged periods. Hydrocyanide, oxalates, soluble oxalate, and phytate are the most studied anti-nutrients. However, the doses at which they occur are far below the limits in foods. In addition, anti-nutrient levels decrease significantly in processing, such as oven-drying and defatting methods. However, there are few studies, so more trials are needed to avoid generalizing. Therefore, edible insects can be considered complete food.
Collapse
Affiliation(s)
- María de la Luz Sánchez-Estrada
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carretera Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Humberto Aguirre-Becerra
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carretera Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ana Angélica Feregrino-Pérez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carretera Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| |
Collapse
|
5
|
Huang W, Wang C, Chen Q, Chen F, Hu H, Li J, He Q, Yu X. Physicochemical, functional, and antioxidant properties of black soldier fly larvae protein. J Food Sci 2024; 89:259-275. [PMID: 37983838 DOI: 10.1111/1750-3841.16846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
This study explores the multifaceted attributes of black soldier fly larvae protein (BSFLP), focusing on its physicochemical, functional, and antioxidant properties. BSFLP is characterized by 16 amino acids, with a predominant random coil secondary structure revealed by circular dichroism spectra. Differential scanning calorimetry indicates a substantial thermal denaturation temperature of 97.63°C. The protein exhibits commendable solubility, emulsification, and foaming properties in alkaline and low-salt environments, albeit with reduced water-holding capacity and foam stability under elevated alkaline and high-temperature conditions. In vitro assessments demonstrate that BSFLP displays robust scavenging proficiency against 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and hydroxyl radicals, with calculated EC50 values of 1.90 ± 0.57, 0.55 ± 0.01, and 1.14 ± 0.02 mg/mL, respectively, along with notable reducing capabilities. Results from in vivo antioxidant experiments reveal that BSFLP, administered at doses of 300 and 500 mg/kg, significantly enhances the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) (p < 0.05) while simultaneously reducing malondialdehyde levels in both serum and tissues of d-galactose-induced oxidative stress in mice. Moreover, the protein effectively attenuates oxidative damage in liver and hippocampal tissues. These findings underscore the potential utility of BSFLP as a natural antioxidant source, with applications spanning the food, pharmaceutical, and cosmetic industries. PRACTICAL APPLICATION: Black soldier fly larvae protein emerges as an environmentally sustainable reservoir of natural antioxidants, holding significant promise for the food, pharmaceutical, and cosmetic sectors. Its advantageous amino acid composition, robust thermal resilience, and impressive functional attributes position it as a compelling subject for continued investigation and advancement in various applications.
Collapse
Affiliation(s)
- Wangxiang Huang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chen Wang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qianzi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Feng Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Haohan Hu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jianfei Li
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qiyi He
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaodong Yu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
6
|
Hasnan FFB, Feng Y, Sun T, Parraga K, Schwarz M, Zarei M. Insects as Valuable Sources of Protein and Peptides: Production, Functional Properties, and Challenges. Foods 2023; 12:4243. [PMID: 38231647 DOI: 10.3390/foods12234243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024] Open
Abstract
As the global population approaches 10 billion by 2050, the critical need to ensure food security becomes increasingly pronounced. In response to the urgent problems posed by global population growth, our study adds to the growing body of knowledge in the field of alternative proteins, entomophagy, insect-based bioactive proteolysates, and peptides. It also provides novel insights with essential outcomes for guaranteeing a safe and sustainable food supply in the face of rising global population demands. These results offer insightful information to researchers and policymakers tackling the intricate relationship between population expansion and food supplies. Unfortunately, conventional agricultural practices are proving insufficient in meeting these demands. Pursuing alternative proteins and eco-friendly food production methods has gained urgency, embracing plant-based proteins, cultivated meat, fermentation, and precision agriculture. In this context, insect farming emerges as a promising strategy to upcycle agri-food waste into nutritious protein and fat, meeting diverse nutritional needs sustainably. A thorough analysis was conducted to evaluate the viability of insect farming, investigate insect nutrition, and review the techniques and functional properties of protein isolation. A review of peptide generation from insects was conducted, covering issues related to hydrolysate production, protein extraction, and peptide identification. The study addresses the nutritional value and global entomophagy habits to elucidate the potential of insects as sources of peptides and protein. This inquiry covers protein and hydrolysate production, highlighting techniques and bioactive peptides. Functional properties of insect proteins' solubility, emulsification, foaming, gelation, water-holding, and oil absorption are investigated. Furthermore, sensory aspects of insect-fortified foods as well as challenges, including Halal and Kosher considerations, are explored across applications. Our review underscores insects' promise as sustainable protein and peptide contributors, offering recommendations for further research to unlock their full potential.
Collapse
Affiliation(s)
- Fatin Fayuni Binti Hasnan
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Yiming Feng
- Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23669, USA
| | - Taozhu Sun
- Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23669, USA
| | - Katheryn Parraga
- Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23669, USA
| | - Michael Schwarz
- Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23669, USA
| | - Mohammad Zarei
- Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23669, USA
| |
Collapse
|
7
|
Exploring the Potential of Black Soldier Fly Larval Proteins as Bioactive Peptide Sources through in Silico Gastrointestinal Proteolysis: A Cheminformatic Investigation. Catalysts 2023. [DOI: 10.3390/catal13030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Despite their potential as a protein source for human consumption, the health benefits of black soldier fly larvae (BSFL) proteins following human gastrointestinal (GI) digestion are poorly understood. This computational study explored the potential of BSFL proteins to release health-promoting peptides after human GI digestion. Twenty-six proteins were virtually proteolyzed with GI proteases. The resultant peptides were screened for high GI absorption and non-toxicity. Shortlisted peptides were searched against the BIOPEP-UWM and Scopus databases to identify their bioactivities. The potential of the peptides as inhibitors of myeloperoxidase (MPO), NADPH oxidase (NOX), and xanthine oxidase (XO), as well as a disruptor of Keap1–Nrf2 protein–protein interaction, were predicted using molecular docking and dynamics simulation. Our results revealed that about 95% of the 5218 fragments generated from the proteolysis of BSFL proteins came from muscle proteins. Dipeptides comprised the largest group (about 25%) of fragments arising from each muscular protein. Screening of 1994 di- and tripeptides using SwissADME and STopTox tools revealed 65 unique sequences with high GI absorption and non-toxicity. A search of the databases identified 16 antioxidant peptides, 14 anti-angiotensin-converting enzyme peptides, and 17 anti-dipeptidyl peptidase IV peptides among these sequences. Results from molecular docking and dynamic simulation suggest that the dipeptide DF has the potential to inhibit Keap1–Nrf2 interaction and interact with MPO within a short time frame, whereas the dipeptide TF shows promise as an XO inhibitor. BSFL peptides were likely weak NOX inhibitors. Our in silico results suggest that upon GI digestion, BSFL proteins may yield high-GI-absorbed and non-toxic peptides with potential health benefits. This study is the first to investigate the bioactivity of peptides liberated from BSFL proteins following human GI digestion. Our findings provide a basis for further investigations into the potential use of BSFL proteins as a functional food ingredient with significant health benefits.
Collapse
|
8
|
Rivas-Vela CI, Castaño-Tostado E, Cardador-Martínez A, Amaya-Llano SL, Castillo-Herrera GA. Subcritical water hydrolysis for the obtention of bioactive peptides from a grasshopper Sphenarium purpurascens protein concentrate. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
9
|
Cytoprotective and Antioxidant Effects of Hydrolysates from Black Soldier Fly ( Hermetia illucens). Antioxidants (Basel) 2023; 12:antiox12020519. [PMID: 36830077 PMCID: PMC9952651 DOI: 10.3390/antiox12020519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The black soldier fly (BSF), Hermetia illucens, has been recognized as one of the most promising insect species for its ability to valorize organic waste while producing a valuable larval biomass with a great potential as a sustainable source of nutrients, including proteins and bioactive molecules. In the present study, BSF larvae were used to produce and characterize the protein hydrolysates (BPHs) that were then evaluated for their potential biological activity in vitro. The BPHs obtained from the BSF larvae proteins by enzymatic digestion were characterized by Nuclear Magnetic Resonance (NMR) and polyacrylamide gel electrophoresis and assessed for their antioxidant activity (BPHs in the range of 0.1 to 1.5 mg/mL) in L-929 cells. Our findings show that BPHs can exert a dose-dependent cytoprotective role against H2O2-iduced oxidative stress in cells. This antioxidant activity relies on the reduction of ROS levels in challenged cells as measured by flow cytometry and fluorescence microscopy, together with the induction and nuclear translocation of Nrf2, as evaluated by qPCR and indirect immunofluorescence analysis, respectively. Overall, our findings on the remarkable biological activity of the BPHs obtained in a large-scale process strongly suggest the application of BPHs as ingredients promoting animal health in feed formulations.
Collapse
|
10
|
Batish I, Zarei M, Nitin N, Ovissipour R. Evaluating the Potential of Marine Invertebrate and Insect Protein Hydrolysates to Reduce Fetal Bovine Serum in Cell Culture Media for Cultivated Fish Production. Biomolecules 2022; 12:1697. [PMID: 36421711 PMCID: PMC9688170 DOI: 10.3390/biom12111697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 02/07/2024] Open
Abstract
The use of fetal bovine serum (FBS) and the price of cell culture media are the key constraints for developing serum-free cost-effective media. This study aims to replace or reduce the typical 10% serum application in fish cell culture media by applying protein hydrolysates from insects and marine invertebrate species for the growth of Zebrafish embryonic stem cells (ESC) as the model organism. Protein hydrolysates were produced from black soldier flies (BSF), crickets, oysters, mussels, and lugworms with a high protein content, suitable functional properties, and adequate amino-acid composition, with the degree of hydrolysis from 18.24 to 33.52%. Protein hydrolysates at low concentrations from 0.001 to 0.1 mg/mL in combination with 1 and 2.5% serums significantly increased cell growth compared to the control groups (5 and 10% serums) (p < 0.05). All protein hydrolysates with concentrations of 1 and 10 mg/mL were found to be toxic to cells and significantly reduced cell growth and performance (p < 0.05). However, except for crickets, all the hydrolysates were able to restore or significantly increase cell growth and viability with 50% less serum at concentrations of 0.001, 0.01, and 0.1 mg/mL. Although cell growth was enhanced at lower concentrations of protein hydrolysates, the cell morphology was altered due to the lack of serum. The lactate dehydrogenase (LDH) activity results indicated that BSF and lugworm hydrolysates did not alter the cell membrane. In addition, light and fluorescence imaging revealed that the cell morphological features were comparable to those of the 10% serum control group. Overall, lugworm and BSF hydrolysates reduced the serum by up to 90% while preserving excellent cell health.
Collapse
Affiliation(s)
- Inayat Batish
- Future Foods Lab and Cellular Agriculture Initiative, Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23699, USA
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mohammad Zarei
- Future Foods Lab and Cellular Agriculture Initiative, Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23699, USA
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, USA
| | - Reza Ovissipour
- Future Foods Lab and Cellular Agriculture Initiative, Virginia Seafood Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA 23699, USA
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
11
|
Emerging proteins as precursors of bioactive peptides/hydrolysates with health benefits. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Cellular Aquaculture: Prospects and Challenges. MICROMACHINES 2022; 13:mi13060828. [PMID: 35744442 PMCID: PMC9228929 DOI: 10.3390/mi13060828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Abstract
Aquaculture plays an important role as one of the fastest-growing food-producing sectors in global food and nutritional security. Demand for animal protein in the form of fish has been increasing tremendously. Aquaculture faces many challenges to produce quality fish for the burgeoning world population. Cellular aquaculture can provide an alternative, climate-resilient food production system to produce quality fish. Potential applications of fish muscle cell lines in cellular aquaculture have raised the importance of developing and characterizing these cell lines. In vitro models, such as the mouse C2C12 cell line, have been extremely useful for expanding knowledge about molecular mechanisms of muscle growth and differentiation in mammals. Such studies are in an infancy stage in teleost due to the unavailability of equivalent permanent muscle cell lines, except a few fish muscle cell lines that have not yet been used for cellular aquaculture. The Prospect of cell-based aquaculture relies on the development of appropriate muscle cells, optimization of cell conditions, and mass production of cells in bioreactors. Hence, it is required to develop and characterize fish muscle cell lines along with their cryopreservation in cell line repositories and production of ideal mass cells in suitably designed bioreactors to overcome current cellular aquaculture challenges.
Collapse
|
13
|
Ye B, Li J, Xu L, Liu H, Yang M. Metabolomic Effects of the Dietary Inclusion of Hermetia illucens Larva Meal in Tilapia. Metabolites 2022; 12:metabo12040286. [PMID: 35448473 PMCID: PMC9032204 DOI: 10.3390/metabo12040286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 12/02/2022] Open
Abstract
Black soldier fly (Hermetia illucens) larvae meal have been used as feed protein supplements in fish feed, but few researches have investigated the metabolomic effects of Hermetia illucens larvae meal supplements. Therefore, the metabolic effects on Nile tilapia were investigated by replacing 5%, 10%, and 20% of the dietary soybean meal in the basal diet with Hermetia illucens larvae meal, respectively. This study shows that 20% H. illucens larvae meal feed could promote tilapia average daily gain of upto 5.03 ± 0.18 g (mean ± SEM). It was found that the tricarboxylic acid cycle efficiency was improved by activating the enzymes of mitochondrial isocitrate dehydrogenase, NAD-malate dehydrogenase, succinate dehydrogenase, pyruvate dehydrogenase, and α-ketoglutarate dehydrogenase, which then increased the output of ATP and NADH. Furthermore, amino acid and protein biosynthesis was boosted by enhanced glutamine synthetase and glutamate synthase. In particular, GSH increased with increased H. illucens larvae meal. Unsaturated fatty acid biosynthesis was stimulated by higher levels of fatty acid synthase and acetyl CoA carboxylase. Additionally, there was no significant change in lipase levels. Thus, the higher acetyl Co-A content was primarily involved in fatty acid biosynthesis and energy metabolism. Flavor substances, such as nonanal and 2-methyl-3-furanthiol, also accumulated with the addition of H. illucens larvae meal, which increased the umami taste and meat flavor. Additionally, the flavor of tilapia was improved owing to a decrease in trimethylamine content, which causes an earthy and fishy taste. This study uncovers a previously unknown metabolic effect of dietary H. illucens larvae meal on Nile tilapia.
Collapse
Affiliation(s)
- Bo Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (B.Y.); (H.L.)
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jian Li
- China Institute of Veterinary Drug Control, Beijing 100081, China;
| | - Lijun Xu
- Tibet University of Tibetan Medicine, Lhasa 850000, China;
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (B.Y.); (H.L.)
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Manjun Yang
- Tibetan Key Laboratory of Veterinary Drug, Tibet Vocational Technical College, Lhasa 850030, China
- Correspondence:
| |
Collapse
|
14
|
Queiroz LS, Casanova F, Feyissa AH, Jessen F, Ajalloueian F, Perrone IT, de Carvalho AF, Mohammadifar MA, Jacobsen C, Yesiltas B. Physical and Oxidative Stability of Low-Fat Fish Oil-in-Water Emulsions Stabilized with Black Soldier Fly ( Hermetia illucens) Larvae Protein Concentrate. Foods 2021; 10:foods10122977. [PMID: 34945527 PMCID: PMC8701752 DOI: 10.3390/foods10122977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023] Open
Abstract
The physical and oxidative stability of fish oil-in-water (O/W) emulsions were investigated using black soldier fly larvae (BSFL) (Hermetia illucens) protein concentrate as an emulsifier. To improve the protein extraction and the techno-functionality, defatted BSFL powder was treated with ohmic heating (BSFL-OH) and a combination of ohmic heating and ultrasound (BSFL-UOH). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were performed in order to characterize the secondary structure and thermal stability of all protein concentrate samples. The interfacial properties were evaluated by the pendant drop technique. The lowest interfacial tension (12.95 mN/m) after 30 min was observed for BSFL-OH. Dynamic light scattering, ζ-potential and turbiscan stability index (TSI) were used to evaluate the physical stability of emulsions. BSFL-OH showed the smallest droplet size (0.68 μm) and the best emulsion stability (TSI = 8.89). The formation of primary and secondary volatile oxidation products and consumption of tocopherols were evaluated for all emulsions, revealing that OH and ultrasound treatment did not improve oxidative stability compared to the emulsion with untreated BSFL. The results revealed the promising application of BSFL proteins as emulsifiers and the ability of ohmic heating to improve the emulsifying properties of BSFL proteins.
Collapse
Affiliation(s)
- Lucas Sales Queiroz
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, Brazil
| | - Federico Casanova
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Aberham Hailu Feyissa
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Flemming Jessen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Fatemeh Ajalloueian
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Italo Tuler Perrone
- Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora (UFJF), Rua José Lourenço Kelmer, São Pedro, Juiz de Fora 36036-900, Brazil;
| | - Antonio Fernandes de Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, Brazil
- Correspondence: (A.F.d.C.); (B.Y.)
| | - Mohammad Amin Mohammadifar
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
- Correspondence: (A.F.d.C.); (B.Y.)
| |
Collapse
|
15
|
Techno-functional properties of edible insect proteins and effects of processing. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Novel Insights on the Sustainable Wet Mode Fractionation of Black Soldier Fly Larvae (Hermetia illucens) into Lipids, Proteins and Chitin. Processes (Basel) 2021. [DOI: 10.3390/pr9111888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The black soldier fly larvae (BSFL) is a sustainable ingredient for feed applications, biofuels, composite materials and other biobased products. Processing BSFL to obtain lipid and protein fractions with enhanced functional properties as a suitable replacement for conventional feed ingredients has gained considerable momentum. In this regard, a novel and sustainable wet mode fractionation (WMF) scheme for BSFL was explored. Fresh BSFL were steam blanched and pulped to obtain BSFL juice and juice press cake. Subsequent treatment of BSFL juice employing homogenization or enzyme incubation and further centrifugation resulted in the obtention of four different BSFL fractions (Lipid—LF; Cream—CF; Aqueous—AF; and Solid—SF). Total energy consumption for a batch BSFL (500 g) WMF process was 0.321 kWh. Aqueous and solid fractions were the predominant constituents of BSFL juice. Lauric acid (44.52–49.49%) and linoleic acid (19.12–20.12%) were the primary fatty acids present in BSFL lipids. Lipid hydrolysis was observed in lipids belonging to the solid (free fatty acids > triacylglycerides) and cream fractions. Aqueous fraction proteins (ctrl) displayed superior emulsion stability and foam capacity than other treatments. Juice press cake retained 60% of the total chitin content and the rest, 40%, was found in the solid fraction (ctrl). The material distribution of principal constituents in different fractions of the WMF process and amino acid profile was elucidated. Overall, the versatile WMF process proposed in this study involves simple unit operations to obtain functional ingredients from BSFL, which can be further explored by researchers and industry stakeholders.
Collapse
|