1
|
de Castro Lippi IC, da Luz Scheffer J, de Lima YS, Lunardi JS, Astolfi A, Kadri SM, Alvarez MVN, de Oliveira Orsi R. Intake of imidacloprid in lethal and sublethal doses alters gene expression in Apis mellifera bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173393. [PMID: 38795984 DOI: 10.1016/j.scitotenv.2024.173393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Bees are important pollinators for ecosystems and agriculture; however, populations have suffered a decline that may be associated with several factors, including habitat loss, climate change, increased vulnerability to diseases and parasites and use of pesticides. The extensive use of neonicotinoids, including imidacloprid, as agricultural pesticides, leads to their persistence in the environment and accumulation in bees, pollen, nectar, and honey, thereby inducing deleterious effects. Forager honey bees face significant exposure to pesticide residues while searching for resources outside the hive, particularly systemic pesticides like imidacloprid. In this study, 360 Apis mellifera bees, twenty-one days old (supposed to be in the forager phase) previously marked were fed syrup (honey and water, 1:1 m/v) containing a lethal dose (0.081 μg/bee) or sublethal dose (0.00081 μg/bee) of imidacloprid. The syrup was provided in plastic troughs, with 250 μL added per trough onto each plastic Petri dish containing 5 bees (50 μL per bee). The bees were kept in the plastic Petri dishes inside an incubator, and after 1 and 4 h of ingestion, the bees were euthanised and stored in an ultra-freezer (-80 °C) for transcriptome analysis. Following the 1-h ingestion of imidacloprid, 1516 genes (73 from lethal dose; 1509 from sublethal dose) showed differential expression compared to the control, while after 4 h, 758 genes (733 from lethal dose; 25 from sublethal) exhibited differential expression compared to the control. All differentially expressed genes found in the brain tissue transcripts of forager bees were categorised based on gene ontology into functional groups encompassing biological processes, molecular functions, and cellular components. These analyses revealed that sublethal doses might be capable of altering more genes than lethal doses, potentially associated with a phenomenon known as insecticide-induced hormesis. Alterations in genes related to areas such as the immune system, nutritional metabolism, detoxification system, circadian rhythm, odour detection, foraging activity, and memory in bees were present after exposure to the pesticide. These findings underscore the detrimental effects of both lethal and sublethal doses of imidacloprid, thereby providing valuable insights for establishing public policies regarding the use of neonicotinoids, which are directly implicated in the compromised health of Apis mellifera bees.
Collapse
Affiliation(s)
- Isabella Cristina de Castro Lippi
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Jaine da Luz Scheffer
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Yan Souza de Lima
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Juliana Sartori Lunardi
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Aline Astolfi
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | - Samir Moura Kadri
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil
| | | | - Ricardo de Oliveira Orsi
- Centre of Education, Science and Technology in Rational Beekeeping (NECTAR), Department of Animal Production and Medicine Veterinary Preventive, UNESP - Univ. Estadual Paulista, Botucatu, Brazil.
| |
Collapse
|
2
|
Du L, Zhao L, Elumalai P, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J, Gao X. Effects of sublethal fipronil exposure on cross-generational functional responses and gene expression in Binodoxys communis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32211-6. [PMID: 38296923 DOI: 10.1007/s11356-024-32211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
The effective systemic insecticide fipronil is widely used on a variety of crops and in public spaces to control insect pests. Binodoxys communis (Gahan) (Hymenoptera: Braconidae) is the dominant natural enemy of Aphis gossypii Glover (Homoptera: Aphididae), an important cotton pest, and has good efficiency in inhibiting aphid populations. The direct effects of environmental residues of sublethal fipronil doses on adult B. communis have not previously been reported. This study therefore aimed to evaluate the side effects and transcriptomic impacts of sublethal fipronil doses on B. communis. The results showed that exposure to the LC10 dose of fipronil significantly reduced the survival rate and parasitism rate of the F0 generation, but did not affect these indicators in the F1 generation. The LC25 dose did not affect the survival or parasitic rates of the F0 generation, but did significantly reduce the survival rate of F1 generation parasitoids. These results indicated that sublethal doses of fipronil affected B. communis population growth. Transcriptome analysis showed that differentially expressed genes (DEGs) in B. communis at 1 h after treatment were primarily enriched in pathways associated with fatty acid elongation, biosynthesis of fatty acids, and fatty acid metabolism. DEGs at 3 days after treatment were mainly enriched in ribosomal functions, glycolysis/gluconeogenesis, and tyrosine metabolism. Six DEGs (PY, ELOVL, VLCOAR, MRJP1, ELOVL AAEL008004-like, and RPL13) were selected for validation with real-time fluorescent quantitative PCR. This is the first report of sublethal, trans-generational, and transcriptomic side effects of fipronil on the dominant parasitoid of A. gossypii. The results of this study show that adaptation of parasitoids to high concentrations of pesticides may be at the expense of their offspring. These findings broaden our overall understanding of the intergenerational adjustments used by insects to respond to pesticide stress and call for risk assessments of the long-term impacts and intergenerational effects of other pesticides.
Collapse
Affiliation(s)
- Lingen Du
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Likang Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Punniyakotti Elumalai
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|