1
|
Akhila S, Varghese T, Sahu NP, Gupta S, Dasgupta S, Deo AD, Mannur VS, Paul Nathaniel T, Chandan NK. Hyperthermal stress potentiates enhanced lipid utilisation in genetically improved farmed Tilapia, Oreochromis niloticus juveniles. Comp Biochem Physiol B Biochem Mol Biol 2024:111033. [PMID: 39278536 DOI: 10.1016/j.cbpb.2024.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
The present experiment evaluated whether dietary protein (P) or lipid (L) is preferred as an energy source by genetically improved farmed tilapia (GIFT) reared at high temperatures. A 60-day feeding trial was conducted at 28.3 °C and 33.3 °C, testing five diets with varying protein (34,36,38 %) and lipid (8,10,12 %) levels, viz., P38L8, P36L8, P34L8, P34L10, P34L12. Parameters assessed included growth, body composition, serum lipids, enzyme activities, fatty acid profiles, and PPAR-α mRNA expression. Results indicated that the fish fed optimum protein and highest lipid level (P34L12) showed significantly higher (P < 0.05) weight gain percent and thermal growth coefficient. Increasing dietary lipid content reduced whole-body lipid deposition and mobilised serum triglycerides and cholesterol at higher temperatures (HT). Hepatic malic enzyme activity decreased with rising temperature and lipid content, while lipoprotein lipase activity in muscle increased. The fatty acid composition altered substantially with the changes in rearing temperature and diets. Unsaturated fats were preferred as direct fuels for β-oxidation, wherein the P34L12 groups preserved body (area %) EPA, DHA, and linolenic acid, especially at HT. The expression of PPAR-α, a lipolytic marker, was upregulated with increasing temperature and high dietary lipid content, peaking in P34L12 groups. The study concludes that high-lipid diets (12 %) are metabolically superior to high-protein diets for GIFT tilapia at elevated temperatures, optimising growth, enhancing metabolic efficiency, and maintaining essential fatty acid profiles under hyperthermal stress.
Collapse
Affiliation(s)
- S Akhila
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Tincy Varghese
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India.
| | - Narottam Prasad Sahu
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Subodh Gupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Subrata Dasgupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ashutosh D Deo
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | | | - T Paul Nathaniel
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Nitish Kumar Chandan
- Fish Nutrition & Physiology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| |
Collapse
|
2
|
Feidantsis K, Panteli N, Bousdras T, Gai F, Gasco L, Antonopoulou E. Dietary Tenebrio molitor larvae meal effects on cellular stress responses, antioxidant status and intermediate metabolism of Oncorhynchus mykiss. J Anim Physiol Anim Nutr (Berl) 2024; 108:1270-1285. [PMID: 38657021 DOI: 10.1111/jpn.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
In the context of evaluating the impact of environmentally friendly and sustainably produced alternative protein sources in fish feed, the present study's aim was to examine the overall physiological stress response in one of the main fish species of European freshwater aquaculture, Oncorhynchus mykiss (rainbow trout), following the partial substitution of fish meal (FM) with a Tenebrio molitor (TM) (yellow mealworm) full-fat meal. In total, 222 rainbow trout individuals (115.2 ± 14.2 g) were allocated randomly into six tanks, three per dietary treatment, and were fed a formulated diet containing 60% yellow mealworm (TM60) compared to a control diet without insect meal (TM0). Both diets contained equal amounts of crude protein, dry matter and, lipid content, while the FM in TM60 was 100 g kg-1 corresponding to the one seventh of the TM0. Heat shock response (HSR), MAPK signalling, cell death pathways (apoptosis and autophagy), antioxidant defence mechanisms, and intermediate metabolism were evaluated. In general, HSR and MAPK signalling were activated in response to the inclusion of T. molitor. Moreover, triggering of apoptotic and autophagic processes and the onset of antioxidant defence mechanisms underlined the existence of physiological stress. Despite the apparent dietary-induced stress, rainbow trout in the present study exhibited no mortality and no significant effects regarding growth performance parameters. Specifically, TM60 dietary inclusion resulted in no changes in final body weight, weight gain, and specific growth rate. However, feed intake depicted a statistically significant decrease in TM60 fish compared to TM0 individuals. Nevertheless, nutrient stress should be considered a limiting factor regarding the utilization of T. molitor in O. mykiss diet due to the associated risks for health and welfare.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Fisheries & Aquaculture, University of Patras, Mesolonghi, Greece
| | - Nikolas Panteli
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Bousdras
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Francesco Gai
- Institute of Sciences of Food Production, National Research Council, Grugliasco, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
3
|
Islam SMM, Siddik MAB, Sørensen M, Brinchmann MF, Thompson KD, Francis DS, Vatsos IN. Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109625. [PMID: 38740231 DOI: 10.1016/j.fsi.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.
Collapse
Affiliation(s)
- S M Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
4
|
Rimoldi S, Di Rosa AR, Oteri M, Chiofalo B, Hasan I, Saroglia M, Terova G. The impact of diets containing Hermetia illucens meal on the growth, intestinal health, and microbiota of gilthead seabream (Sparus aurata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1003-1024. [PMID: 38386264 PMCID: PMC11213805 DOI: 10.1007/s10695-024-01314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
The present study investigated the effect of replacing fishmeal (FM) with insect meal of Hermetia illucens (HI) in the diet of Sparus aurata farmed inshore on growth, gut health, and microbiota composition. Two isolipidic (18% as fed) and isoproteic (42% as fed) diets were tested at the farm scale: a control diet without HI meal and an experimental diet with 11% HI meal replacing FM. At the end of the 25-week feeding trial, final body weight, specific growth rate, feed conversion rate, and hepatosomatic index were not affected by the diet. Gross morphology of the gastrointestinal tract and the liver was unchanged and showed no obvious signs of inflammation. High-throughput sequencing of 16S rRNA gene amplicons (MiSeq platform, Illumina) used to characterize the gut microbial community profile showed that Proteobacteria, Fusobacteria, and Firmicutes were the dominant phyla of the gut microbiota of gilthead seabream, regardless of diet. Dietary inclusion of HI meal altered the gut microbiota by significantly decreasing the abundance of Cetobacterium and increasing the relative abundance of the Oceanobacillus and Paenibacillus genera. Our results clearly indicate that the inclusion of HI meal as an alternative animal protein source positively affects the gut microbiota of seabream by increasing the abundance of beneficial genera, thereby improving gut health and maintaining growth performance of S. aurata from coastal farms.
Collapse
Affiliation(s)
- Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Ambra Rita Di Rosa
- Department of Veterinary Sciences, University of Messina, Messina, Italy.
| | - Marianna Oteri
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Biagina Chiofalo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Imam Hasan
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Marco Saroglia
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy.
| |
Collapse
|
5
|
Donadelli V, Di Marco P, Mandich A, Finoia MG, Cardinaletti G, Petochi T, Longobardi A, Tibaldi E, Marino G. Effects of Dietary Plant Protein Replacement with Insect and Poultry By-Product Meals on the Liver Health and Serum Metabolites of Sea Bream ( Sparus aurata) and Sea Bass ( Dicentrarchus labrax). Animals (Basel) 2024; 14:241. [PMID: 38254412 PMCID: PMC10812684 DOI: 10.3390/ani14020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The liver health of Gilthead sea bream and European sea bass, fed with fish meal-free diets, including various proportions of plant proteins, as well as insect and poultry by-product meals, was investigated through biochemical and histological analyses using a new liver index (LI) formula. Four isoproteic (45% Dry Matter, DM) and isolipidic (20% DM) diets were compared, including a plant-based control diet (CV) and three other test diets, in which 40% of a plant protein-rich ingredient mixture was replaced with meals from Hermetia illucens (H40) or poultry by-product (P40) alone, or in combination (H10P30). The trials lasted 12 and 18 weeks for sea bream and sea bass, respectively. The results obtained thus far highlighted species-specific differences in the physiological response to dietary changes. In sea bream, the biochemical and histological responses suggest favorable physiological and liver health statuses, with higher serum cholesterol (CHO) and triglyceride (TAG) levels, as well as moderate hepatocyte lipid accumulation, with the H10P30 diet compared to the CV (p < 0.05). In sea bass, all diets resulted in elevated serum TAG levels and lipid accumulation in the liver, particularly in fish fed the P40 one (p < 0.05), which resulted in the highest LI, coupled with a higher frequency of severe lipid accumulation, hypertrophy, cord loss, peripheral nuclei displacement, and pyknosis. In conclusion, sea bream adapted well to the test diets, whereas sea bass exhibited altered hepatic lipid metabolism leading to incipient liver steatosis, likely due to the high lipid contents of the diets, including the insect and poultry meals. The LI formula developed in this study proved to be a reliable tool for assessing the effects of dietary changes on the liver health of sea bream and sea bass, consistent with biochemical and histological findings.
Collapse
Affiliation(s)
- Valeria Donadelli
- Italian National Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy; (V.D.); (M.G.F.); (T.P.); (A.L.); (G.M.)
| | - Patrizia Di Marco
- Italian National Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy; (V.D.); (M.G.F.); (T.P.); (A.L.); (G.M.)
| | - Alberta Mandich
- Interuniversity Consortium INBB—Biostructures and Biosystems National Institute, 00136 Rome, Italy;
| | - Maria Grazia Finoia
- Italian National Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy; (V.D.); (M.G.F.); (T.P.); (A.L.); (G.M.)
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy; (G.C.); (E.T.)
| | - Tommaso Petochi
- Italian National Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy; (V.D.); (M.G.F.); (T.P.); (A.L.); (G.M.)
| | - Alessandro Longobardi
- Italian National Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy; (V.D.); (M.G.F.); (T.P.); (A.L.); (G.M.)
| | - Emilio Tibaldi
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy; (G.C.); (E.T.)
| | - Giovanna Marino
- Italian National Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy; (V.D.); (M.G.F.); (T.P.); (A.L.); (G.M.)
| |
Collapse
|
6
|
Rodríguez-Rodríguez M, Sánchez-Muros MJ, Vargas-García MDC, Varga AT, Fabrikov D, Barroso FG. Evaluation of In Vitro Protein Hydrolysis in Seven Insects Approved by the EU for Use as a Protein Alternative in Aquaculture. Animals (Basel) 2023; 14:96. [PMID: 38200825 PMCID: PMC10778058 DOI: 10.3390/ani14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Rapid population growth is leading to an increase in the demand for high-quality protein such as fish, which has led to a large increase in aquaculture. However, fish feed is dependent on fishmeal. It is necessary to explore more sustainable protein alternatives that can meet the needs of fish. Insects, due to their high protein content and good amino acid profiles, could be a successful alternative to fishmeal and soybean meal traditionally used in sectors such as aquaculture. In this work, seven species of insects (Hermetia illucens, Tenebrio molitor, Acheta domestica, Alphitobius diaperinus, Gryllodes sigillatus, Gryllus assimilis, and Musca domestica) approved by the European Union (UE) for use as feed for farmed animals (aquaculture, poultry, and pigs) were studied. Their proximate composition, hydrolysis of organic matter (OMd), hydrolysis of crude protein (CPd), degree of hydrolysis (DH/NH2 and DH/100 g DM), and total hydrolysis (TH) were analyzed. The results showed that Tenebrio molitor had digestibility similar to that of fishmeal, while Acheta domestica and Hermetia illucens provided similar digestibility to that of soybean meal. The acid detergent fiber (ADF) data were negatively correlated with all protein digestibility variables. The differences in the degree of hydrolysis (DH) results and the similarity in total hydrolysis (TH) results could indicate the slowing effects of ADF on protein digestibility. Further in vivo studies are needed.
Collapse
Affiliation(s)
- María Rodríguez-Rodríguez
- Department of Biology and Geology, CECOUAL, University of Almería, Carretera de Sacramento s/n, 04120 Almeria, Spain;
| | - María José Sánchez-Muros
- Department of Biology and Geology, CEIMAR, University of Almería, Carretera de Sacramento s/n, 04120 Almeria, Spain; (M.J.S.-M.); (M.d.C.V.-G.); (A.T.V.); (D.F.)
| | - María del Carmen Vargas-García
- Department of Biology and Geology, CEIMAR, University of Almería, Carretera de Sacramento s/n, 04120 Almeria, Spain; (M.J.S.-M.); (M.d.C.V.-G.); (A.T.V.); (D.F.)
| | - Agnes Timea Varga
- Department of Biology and Geology, CEIMAR, University of Almería, Carretera de Sacramento s/n, 04120 Almeria, Spain; (M.J.S.-M.); (M.d.C.V.-G.); (A.T.V.); (D.F.)
| | - Dmitri Fabrikov
- Department of Biology and Geology, CEIMAR, University of Almería, Carretera de Sacramento s/n, 04120 Almeria, Spain; (M.J.S.-M.); (M.d.C.V.-G.); (A.T.V.); (D.F.)
| | - Fernando G. Barroso
- Department of Biology and Geology, CECOUAL, University of Almería, Carretera de Sacramento s/n, 04120 Almeria, Spain;
| |
Collapse
|
7
|
Antonopoulou E, Kolygas M, Panteli N, Gouva E, Kontogeorgiou P, Feidantsis K, Chatzopoulos A, Bitchava K, Zacharis C, Bonos E, Giannenas I, Skoufos I, Andreadis SS, Skoulakis G, Athanassiou CG, Nathanailides C. Breeding Substrate Containing Distillation Residues of Mediterranean Medicinal Aromatic Plants Modulates the Effects of Tenebrio molitor as Fishmeal Substitute on Blood Signal Transduction and WBC Activation of Gilthead Seabream ( Sparus aurata). Animals (Basel) 2023; 13:2537. [PMID: 37570345 PMCID: PMC10417334 DOI: 10.3390/ani13152537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
This work assesses the dietary use of two insect meals of Tenebrio molitor (TM) larvae reared in conventional (TM-10) or MAP-enriched substrates (MAP-TM-10) as fish meal replacements (10%) in the diets of gilthead seabream (Sparus aurata). Fish (n = 4500; 207.19 ± 1.47 g) were divided into three groups with triplicates: control (fed conventional diet), TM-10, and MAP-TM-10 groups. The fish were reared in floating cages for 12 weeks and the dietary effects on white blood cell activation, heat shock proteins, MAPKs, and apoptosis of the fish were evaluated. The MAP-TM-10 group exhibited the highest eosinophilic induction. Phosphorylated levels of p38 MAPK, p44/42 MAPK, HSP70, and HSP90 increased in the TM-10 and MAP-TM-10 groups. In terms of apoptosis, Bax levels were lower in the TM groups compared to the control, and the MAP-TM-10 group showed even lower levels than the TM-10 group. Bcl-2 levels increased in the TM-10 group compared to the control, and further increased in the MAP-TM-10 group. The Bax/Bcl-2 ratio, an apoptosis indicator, decreased in the TM groups, with the MAP-TM-10 group showing a further decrease compared to TM-10. These findings suggest that insects' breeding substrate being enriched with MAPs modulated the effect of TM on cellular stress and apoptosis.
Collapse
Affiliation(s)
- Efthimia Antonopoulou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Markos Kolygas
- Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (M.K.)
| | - Nikolas Panteli
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evangelia Gouva
- Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (M.K.)
| | - Panagiota Kontogeorgiou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Fisheries and Aquaculture, University of Patras, 26504 Messolonghi, Greece
| | - Achilleas Chatzopoulos
- Laboratory of Applied Hydrobiology, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantina Bitchava
- Laboratory of Applied Hydrobiology, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece
- Skaloma Fishery [A.C], 46300 Sagaida, Greece
| | - Christos Zacharis
- Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (M.K.)
| | - Eleftherios Bonos
- Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (M.K.)
| | - Ilias Giannenas
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Skoufos
- Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (M.K.)
| | - Stefanos S. Andreadis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization “DEMETER”, 57001 Thermi, Greece
| | - Georgios Skoulakis
- AgriScienceGEO, Melpomenis Str. P.O. Box 60561, Industrial Area of Thermi, 57001 Thessaloniki, Greece
| | - Christos G. Athanassiou
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Nea Ionia, Greece
| | | |
Collapse
|
8
|
Biasato I, Gasco L, Schiavone A, Capucchio MT, Ferrocino I. Gut microbiota changes in insect-fed monogastric species: state-of-the-art and future perspectives. Anim Front 2023; 13:72-80. [PMID: 37583797 PMCID: PMC10425147 DOI: 10.1093/af/vfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Affiliation(s)
- Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| |
Collapse
|
9
|
Moulistanos A, Karaiskou N, Gkagkavouzis K, Minoudi S, Drosopoulou E, Ioannidou C, Panteli N, Zografou S, Karaouglanis D, Kotouzas D, Kontodimas D, Antonopoulou E, Triantafyllidis A. Genetic Identification and Traceability of Insect Meals. INSECTS 2023; 14:610. [PMID: 37504616 PMCID: PMC10380534 DOI: 10.3390/insects14070610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Insects have been proposed as a rich alternative source of protein for the partial or total replacement of fishmeal in aquaculture. For maximum safety and effectiveness of insect meals, control of the quality composition of these products is considered mandatory. The aim of this study was the genetic analysis of the composition of commercially available insect meals at the species level. Commercially available Hermetia illucens, Tenebrio molitor and Musca domestica individuals, as well as nine insect meals produced from these species, were analyzed. The genetic identification of insects at the species level was based on a COI fragment, and analysis of the insect meals' composition was performed with the processes of cloning and colony PCR. Genetic analysis indicated that the commercially available larvae morphologically identified as Musca domestica belonged to the species Muscina stabulans. In the commercially available insect meals, no other animal species was identified beyond the expected one. However, in the insect meal produced for research purposes, fungal growth was detected. The used methodology, herein, allows for the qualitative genetic identification of insect meals and could be included in the methods of traceability of products containing insects and other animal species.
Collapse
Affiliation(s)
- Aristotelis Moulistanos
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Nikoleta Karaiskou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Konstantinos Gkagkavouzis
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Styliani Minoudi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysanthi Ioannidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolas Panteli
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stella Zografou
- Department of Humanities, Social Sciences and Economics, School of Humanities, Social Sciences and Economics, International Hellenic University, 57001 Thessaloniki, Greece
| | - Damianos Karaouglanis
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| | - Dimitrios Kotouzas
- Laboratory of Agricultural Entomology, Benaki Phytopathological Institute, Kifissia, 14561 Athens, Greece
| | - Dimitrios Kontodimas
- Laboratory of Agricultural Entomology, Benaki Phytopathological Institute, Kifissia, 14561 Athens, Greece
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandros Triantafyllidis
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 57001 Thessaloniki, Greece
| |
Collapse
|
10
|
Fan K, Liu H, Pei Z, Brown PB, Huang Y. A study of the potential effect of dietary fishmeal replacement with cricket meal (Gryllus bimaculatus) on growth performance, blood health, liver antioxidant activities, intestinal microbiota and immune-related gene expression of juvenile channel catfish. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Bousdras T, Feidantsis K, Panteli N, Chatzifotis S, Piccolo G, Gasco L, Gai F, Antonopoulou E. Dietary Tenebrio molitor Larvae Meal Inclusion Exerts Tissue-Specific Effects on Cellular, Metabolic, and Antioxidant Status in European Sea Bass ( Dicentrarchus labrax) and Gilthead Seabream ( Sparus aurata). AQUACULTURE NUTRITION 2022; 2022:9858983. [PMID: 36860434 PMCID: PMC9973136 DOI: 10.1155/2022/9858983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/30/2022] [Indexed: 06/01/2023]
Abstract
The present study addresses the effects of dietary Tenebrio molitor (TM) larvae meal inclusion on cytoprotective, cell death pathways, antioxidant defence, and intermediate metabolism in the heart, muscle, and digestive tract of gilthead seabream (Sparus aurata) and European sea bass (Dicentrarchus labrax). Three experimental diets were formulated to contain 0%, 25%, or 50% inclusion TM levels. Heat Shock Proteins (HSPs) induction was apparent in both species' muscle at 50% inclusion. Conversely, p44/42 Mitogen-Activated Protein Kinase (MAPK) activation was increased (p < 0.05) in both species' muscle and digestive tract at 25% inclusion. Regarding the apoptotic machinery, TM inclusion exerted no influence on gilthead seabream, while suppression through autophagy may have occurred in the muscle. However, significant apoptosis (p < 0.05) was evident in European sea bass muscle and digestive tract. Both fish species' heart seemed to additionally rely on lipids compared to muscle and digestive tract. In contrast to gilthead seabream, European sea bass exhibited increased (p < 0.05) antioxidant activity at 50% TM inclusion. The present findings highlight the dietary derived induction of cellular responses in a species- and tissue-specific manner, whereas European sea bass appears to be more susceptible to TM inclusion.
Collapse
Affiliation(s)
- Thomas Bousdras
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Nikolas Panteli
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Stavros Chatzifotis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, P.O. Box 2214, GR-71003, Heraklion, Crete, Greece
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Francesco Gai
- Institute of Sciences of Food Production, National Research Council, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
12
|
Maulu S, Langi S, Hasimuna OJ, Missinhoun D, Munganga BP, Hampuwo BM, Gabriel NN, Elsabagh M, Van Doan H, Abdul Kari Z, Dawood MA. Recent advances in the utilization of insects as an ingredient in aquafeeds: A review. ANIMAL NUTRITION 2022; 11:334-349. [PMID: 36329686 PMCID: PMC9618972 DOI: 10.1016/j.aninu.2022.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 05/05/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022]
Abstract
The aquafeed industry continues to expand in response to the rapidly growing aquaculture sector. However, the identification of alternative protein sources in aquatic animal diets to replace conventional sources due to cost and sustainability issues remains a major challenge. Recently, insects have shown tremendous results as potential replacers of fishmeal in aquafeed. The present study aimed to review the utilization of insects in aquafeeds and their effects on aquatic animals' growth and feed utilization, immune response and disease resistance, and fish flesh quality and safety. While many insect species have been investigated in aquaculture, the black soldier fly (Hermetia illucens), and the mealworm (Tenebrio molitor) are the most studied and most promising insects to replace fishmeal in aquafeed. Generally, insect rearing conditions and biomass processing methods may affect the product's nutritional composition, digestibility, shelf life and required insect inclusion level by aquatic animals. Also, insect-recommended inclusion levels for aquatic animals vary depending on the insect species used, biomass processing method, and test organism. Overall, while an appropriate inclusion level of insects in aquafeed provides several nutritional and health benefits to aquatic animals, more studies are needed to establish optimum requirements levels for different aquaculture species at different stages of development and under different culture systems.
Collapse
|
13
|
Pleić IL, Bušelić I, Messina M, Hrabar J, Žuvić L, Talijančić I, Žužul I, Pavelin T, Anđelić I, Pleadin J, Puizina J, Grubišić L, Tibaldi E, Šegvić-Bubić T. A plant-based diet supplemented with Hermetia illucens alone or in combination with poultry by-product meal: one step closer to sustainable aquafeeds for European seabass. J Anim Sci Biotechnol 2022; 13:77. [PMID: 35811320 PMCID: PMC9272557 DOI: 10.1186/s40104-022-00725-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Increasing demand for high-value fish species and pressure on forage fish is challenging aquaculture to ensure sustainable growth by replacing protein sources in aquafeeds with plant and terrestrial animal proteins, without compromising the economic value and quality of the final fish product. In the present study, the effects of a plant protein-based diet (CV), two plant-based diets in which graded amounts of plan protein mixtures were replaced with Hermetia illucens meal alone (VH10) or in combination with poultry by-product meal (PBM) (VH10P30), a fishmeal (FM) diet (CF) and an FM diet supplemented with H. illucens (FH10) on growth performance, gut health and homeostasis of farmed subadult European seabass were tested and compared. Results Fish fed the VH10 and VH10P30 diets showed the highest specific growth rates and lowest feed conversion ratios among the tested groups. Expectedly, the best preservation of PI morphology was observed in fish fed the CF or FH10 diets, while fish fed the CV diet exhibited significant degenerative changes in the proximal and distal intestines. However, PBM supplementation mitigated these effects and significantly improved all gut morphometric parameters in the VH10P30 group. Partial substitution of the plant mixture with insect meal alone or PBM also induced most BBM genes and activated BBM enzymes, suggesting a beneficial effect on intestinal digestive/absorption functions. Regarding intestinal microbiota, fish fed diets containing H. illucens meal (FH10, VH10, VH10P30) had the highest richness of bacterial communities and abundance of beneficial genera such as Lactobacillus and Bacillus. On the other hand, fish fed CV had the highest microbial diversity but lost a significant component of fish intestinal microbiota, the phylum Bacteroidetes. Finally, skin pigmentation most similar to that of farmed or even wild seabass was also observed in the fish groups fed CF, FH10 or VH10P30. Conclusion Plant-based diets supplemented with PBM and H. illucens pupae meal have great potential as alternative diets for European seabass, without affecting growth performance, gut homeostasis, or overall fitness. This also highlights the importance of animal proteins in diets of European seabass, as the addition of a small amount of these alternative animal protein sources significantly improved all measured parameters. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00725-z.
Collapse
|